На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Волоконный световод как основной элемент оптического кабеля. Физические и технические особенности светопередачи. Общие сведения об оптоволокне и их типы. Физика светопередачи и основы теории затухания. Типичный спектр поглощения кварцевого световода.

Информация:

Тип работы: Лекции. Предмет: Схемотехника. Добавлен: 13.12.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


29
Физические основы распространения излучения по оптическому волокну
План

1. Волоконный световод
2. Физические и технические особенности
3. Общие сведения об оптоволокне
4. Физика светопередачи
5. Затухание
Волоконно-оптические линии связи (ВОЛС) - это система передачи данных, при которой информация передается по оптически прозрачным диэлектрическим волноводам, называемым “оптическое волокно”.
Волоконно-оптическая сеть - это информационная сеть, связующими элементами между узлами которой являются волоконно-оптические линии связи.
1. Волоконный световод

Основным элементом оптического кабеля является волоконный световод. Это тонкое стеклянное волокно цилиндрической формы, по которому происходит передача электромагнитного излучения микронного диапазона волн, соответствующего частотам 1014-1015 Гц. Принцип действия волоконного световода основан на использовании процессов отражения и преломления оптической волны на границе раздела двух сред с различными оптическими свойствами, зависящими от показателя преломления n.
При падении луча на границу раздела двух сред в общем случае появляются преломленная и отраженная волны. Согласно закону Снеллиуса угол падения цп связан с углами отражения отр и преломления пр соотношением:
цnотр,
n1sinцn=n2sinцпр (1)
причем если n1>n2, то из (1) следует, что пр > n (см. рис.1)
По мере увеличения угла падения со стороны оптически более плотной среды можно достичь состояния, когда приломленный луч будет скользить по границе раздела сред без перехода в оптически менее плотную среду (луч 2 рис.2).
Рис. 1. Падение световой волны на границу раздела двух сред при n1>n2
Угол падения, при котором наблюдается такой эффект, называется предельным углом полного внутреннего отражения. Для всех углов падения, которые превышают предельный, будет иметь место только отражение. Это явление называется полным внутренним отражением, оно положено в основу передачи оптического излучения по световоду.
Рис. 2. Прохождение лучей в волоконном световоде
Обычно волоконные световоды имеют круглое поперечное сечение и состоят из двух концентрических слоев оптически прозрачного диэлектрика. В центре располагается сердцевина из оптически более плотного кварца, его окружает оболочка из кварца с меньшей оптической плотностью. Волокна отличаются диаметром сердцевины и оболочки, а также профилем показателя преломления сердцевины. Профиль показателя преломления - это закон, который показывает, как может меняться или оставаться постоянным показатель преломления оболочки вдоль радиуса. При обозначении волокна указываются через дробь значения диаметров сердцевины и оболочки.
2. Физические и технические особенности

Физические особенности:
1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=1014 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1012 бит/с или Терабит/с.(т.е. по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов). Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
2. Очень малое затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов.
Технические особенности:
1.Волокно изготовлено из кварца, основу которого составляет двуокись кремния.
2. Оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
3. Стеклянные волокна -- не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии.
Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения. При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.
5.Важное свойство оптического волокна -- долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.
3. Общие сведения об оптоволокне

Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.
В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией. Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.
Конструктивно все оптичеcкие волокна содержат в себе некоторое число нижеперечисленных слоев:
1. сердечник, который несет в себе большую часть света
2. отражающая оболочка, преломляющая свет и ограничивающая его в сердечнике
3. покрытие первичного буфера, обеспечивающее первый уровень механической защиты
4. покрытие вторичного буфера, которое защищает относительно хрупкое первичное покрытие и само волокно.
Многомодовое волокно
В случае многомодового волокна диаметр сердечника по сравнению с длиной световой волны относительно большой. Диаметр сердечника от 50 микрон до 1000 в сравнении с длиной волны света 1300 нм. Это означает, что свет может распространяться в волокне в различных направлениях или модах -- отсюда и название многомодовое волокно. Простейший и достаточно старый тип -- это волокно с шаговым индексом. Коэффициент преломления -- возможность материала отражать свет -- в нем постоянен по всему сечению сердечника. Это приводит к тому что лучи света распространяются в нем так как показано на рисунке:
Многомодовое волокно со ступенчатым коэффициентом
1 -- входной импульс
2 -- дисперсия
3 -- выходной импульс
4 -- коэффициент преломления
5 -- мода высокого порядка
6 -- мода низкого порядка
В многомодовом волокне лучи света, соответствующие различным модам, проходят различные дистанции. Если в такое волокно ввести короткий импульс света, то его лучи прибудут на противоположный конец через различные промежутки времени, и выходной импульс будет шире, чем входной. Это явление называют модовая дисперсия. Она ограничивает число импульсов в секунду, которые могут быть переданы через волокно и все еще распознающихся на противоположном конце, как отдельные импульсы. По этой причине пропускная способность волокна с шаговым индексом невелика и составляет 20 -30 МГц для кабеля длиной 1 км.
Многомодовое волокно с градиентным коэффициентом
1 -- входной импульс
2 -- дисперсия
3 - выходной импульс
4 -- коэффициент преломления
Для многомодового волокна с последовательным индексом коэффициент преломления плавно (последовательно) изменяется от максимума в самом центре до минимума по краям. Такая конструкция использует тот факт, что свет распространяется быстрее в материалах с низким коэффициентом преломления чем в материалах с высоким. Поэтому световой импульс, распространяясь в таком волокне, имеет гораздо меньшую модовую дисперсию, а кабель за счет этого гораздо большую пропускную способность от 100МГц до 1300МГц для кабеля длиной один километр. Наиболее популярный тип многомодового волокна, используемого в локальных компьютерных сетях обычно обозначается как MM 62.5/125.
ММ означает MultiMode или многомодовое, диаметр сердечника такого волокна 62.5 микрона, а диаметр оболочки 125 микрон.
Одномодовое волокно
Для одномодового волокна диаметр сердечника составляет 8 микрон, что гораздо ближе к обычно используемой длине волны 1300 нм. Это позволяет передовать свет одной нулевой модой и полностью устранить эффект модовой дисперсии, о котором шла речь выше. Однако дисперсии присутствует, она носит название частотной и связана с тем, что свет с разной длиной волн (разного цвета) распространяется в волокне с различной скоростью. Таким образом, пропускная способность такого кабеля хотя и увеличивается, но остается ограниченной ~ 100ГГц и в достаточно сильной степени зависит от спектральной чистоты источника света. Хотя такое волокно и позволяет передовать данные на гораздо большие расстояния -- десятки километров, одномодовые системы достаточно дороги, потому что в качестве источника света в них используют сравнительно дорогие лазеры с очень узким спектральным составом излучаемого света. Наиболее популярный тип одномодового волокна обычно обозначается как SM 8/125. SМ означает SingleMode или одномодовое, диаметр сердечника такого волокна 8 микрон, а диаметр оболочки 125 микрон.
Окна прозрачности
Окно прозрачности -- это длина световой волны излучения, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны -- 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна -- т. е. оптическое излучение может передаваться на двух длинах волн. Для многомодовых оптических волокон это 850 и 1310 нм, а для одномодовых -- 1310 и 1550 нм.
4. Физика светопередачи

В градиентном световоде рефракция приводит к самофокусировке отдельных лучей на осевой линии, при этом их траектории представляют собой синусоиды, а для немеридиональиых лучей - винтовые линии.
Удержание излучения внутри оптически более плотной центральной части световода обеспечивается не для всех лучей, а лишь для той их части, которые падают на торец не слишком косо (угол падения отсчитывается от нормали к плоскости торца). Для каждого световода имеется некоторый критический угол ц0 определяющий его угловую апертуру: лишь лучи с угламираспространяются по волокну. Величина называется числовой апертурой и является важной характеристикой световода; именно этот параметр входит во многие расчетные формулы. Излучение, заключенное внутри конуса с углом при вершине представляет собой направляемые или каналируемые лучи (моды). Если то после многократного повторения акта отражения - преломления на границе сердцевина - оболочка вся энергия луча перейдет в оболочку и удержится в ней, если выполняется условие полного внутреннего отражения на внешней границе оболочки. Эта часть излучения представляет собой вытекающие или оболочечные лучи (моды). Если условие не выполняется, то лучи выходят и из оболочки - это излучаемые моды. При больших длинах распространения вытекающие лучи поглощаются в оболочке (менее прозрачной, чем сердечник) и в процессе светопередачи по волокну участвуют только внутриапертурные направляемые лучи.
Описанным механизмом светопередачи обусловлена и дисперсия волокна, заключающаяся в различии групповых скоростей составляющих оптического излучения. Этот эффект вызывается двумя причинами:
во-первых, лучи с разными углами падения проходят в световоде различные расстояния и,
во-вторых, свойства материала зависят от длины волны излучения, а любой реальный источник не строго монохроматичен.
Иными словами, дисперсия волокна, трактуемая более широко, чем это принято в традиционной оптике, зависит не только от степени когерентности излучения, но и от геометрических характеристик волокна.
Согласно сказанному выделяют три составляющие дисперсии:
межмодовую (или волноводную), обусловленную различием групповых скоростей различных мод [см. формулу (1.25)];
внутри-модовую, обусловленную нелинейной зависимостью постоянной распространения данной моды от длины волны; материальную- (дисперсию материала), выражающуюся в зависимости показателя преломления среды от длины волны.
Сушествование этих составляющих однозначно вытекает из анализа формул (1.16), (1.25) и (1.46). Отметим, что модовая дисперсия может иметь место и тогда, когда показатель преломления среды не зависит от л, т. е. дисперсия материала D = 0.
Дисперсия подобно инерционным процессам в электрических цепях и электронных приборах проявляется в завале частотной характеристики световода (зависимость интенсивности излучения на выходе от частоты модуляции) и в искажении передаваемых импульсов света (расплывание, уширение). Любой из видов дисперсии тем существеннее, чем протяженнее световод (временное расхождение между двумя лучами «набегает» по мере их распространения); поэтому для характеристики инерционности используют временные параметры, приведенные к единице длины световода: полоса пропускания f0 МГц-км; постоянная дисперсии нс/км; уширение импульсанс/км. Величина f0 определяется по спаду частотной характеристики на 3 дб, - по времени нарастания импульса в е раз, - по расплыванию единичногоимпульса на уровне половины его амплитуды. Между этими параметрами имеется простая взаимосвязь:
Для оценки инерционности световода длиной L величины умножаются, а f0 делится на L
Качественное сравнение двух типов волокон приводит к заключению, что градиентные световоды должны иметь лучшие-дисперсионные свойства. В них луч света, распространяющийся по искривленной траектории, значительную часть пути проходит в областях с уменьшенным значением n, т. е. с большей скоростью, чем, например, осевой луч. Поэтому при различии длин двух световых путей время их прохождения лучами может оказаться практически одинаковым. В световоде со ступенчатым изменением показателя преломления эффект выравнивания времени распространения не имеет места, так как скорость распространения света по всему сечению сердечника постоянна. По существу стремление ослабить дисперсионные эффекты и явилось основным стимулом развития градиентных световодов.
Основы теории.
Ряд полезных соотношений может быть получен с помощью математического аппарата лучевой теории, пренебрегающего конечностью длины волны света и нелинейными эффектами.
Если на торец ступенчатого волокна (рис. 9.1) из среды с показателем преломления n0 поступает поток излучения, то по закону отражения - преломления совместно для поверхностей торца и границы сердцевина - оболочка
где -- показатели преломления сердцевины и оболочки -световода. Это прямо следует из соотношений и Обычно излучение приходит из воздухатогда
гдеи - соответственно абсолютная и относительная разности показателей преломления сердцевины и оболочки. Изгиб световода приводит к тому, что угол между лучом и границей раздела сердечник -- оболочка возрастает и угловая апертура уменьшается. Используя ту же схему расчета и учитывая, что радиус изгиба - диаметр сердцевины), получаем, что снижение числовой апертуры до 90% от своего, первоначального значения произойдет при
Окончательное выражение в (9.4) получено при При типичныхмкм и имеем
Определение гизг.мин условно: за критерий принято в ряде случаев допустимыми являются большие или меньшие отклонения от для неизогнутого световода, при этом изменяется и гизг.мин. Отметим также, что по (9.4) определяют только исходя из условия изменения апертуры; практически Более чувствительными к изгибу могут оказаться дисперсионные эффекты или характеристики, связанные с механической прочностью волокна.
Рис. 9.1. Ход световых лучей в ступенчатом световоде до (1) и после (2) изгиба
Применительно к градиентному световоду расчеты по лучевой теории для малых углов падения дают траекторию луча в виде периодической функции (в простейшем случае синусоиды), причем в общем случае значение периода зависит от координаты и угла вода. Однако при достаточно малом практически для любого конкретного закона изменения n периоды для всех лучей оказываются одинаковыми, т. е. осуществляется условие самофокусировки. Для типичных градиентных световодов с период самофокусировки около
Лучевая теория позволяет провести полу количественную оценку и межмодовой дисперсии. Из рис. 9.1 видно, что для двухслойного световода разница времен распространения центрального осевого луча и луча сна единичной длине
(9.5)
где c - скорость света; L км;, мкс/км. Последнее равенство в (9.5) получено для; таким образом, для типичного и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.