На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Экранирование электромагнитных полей. Процесс экранирования электромагнитного поля при падении плоской волны на бесконечно протяженую металлическую пластину. Экранирование узлов радиоэлектронной аппаратуры. Экранирование высокочастотных катушек, контуров.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 19.11.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»
Кафедра Защиты информации


РЕФЕРАТ
На тему:

«Экранирование электромагнитных полей, узлов радиоэлектронной аппаратуры и их соединений. Материалы для экранов»
МИНСК, 2008
1. Экранирование электромагнитных полей

Рассмотрим процесс экранирования электромагнитного поля при падении плоской волны на бесконечно протяженную металлическую пластину толщиной d, находящуюся в воздухе (рис. 34). В этом случае на границе раздела двух сред с различными электрофизическими характеристиками (воздух--металл и металл--воздух) волна претерпевает отражение и преломление, а в толще экрана, ввиду его проводящих свойств, происходит частичное поглощение энергии электромагнитного поля. Таким образом, электромагнитная волна при взаимодействии с экраном отражается от его поверхности, частично проникает в стенку экрана, претерпевает поглощение в материале экрана, многократно отражается от стенок экрана и, в конечном счете, частично проникает в экранируемую область. В результате общая эффективность экранирования (величина потерь энергии электромагнитной волны) металлической пластиной определяется суммой потерь за счет поглощения (затухания) энергии в толще материала Апогл, отражения энергии от границ раздела внешняя среда--металл и металл--экранируемая область Аотр и многократных внутренних отражений в стенках экрана Амотр:
(1)
Потери на поглощение связаны с поверхностным эффектом в проводниках, приводящим к экспоненциальному уменьшению амплитуды проникающих в металлический экран электрических и магнитных полей.
Это обусловлено тем, что токи, индуцируемые в металле, вызывают омические потери и, следовательно, нагрев экрана.
Рис. 1. Экранирование электромагнитного поля металлическим экраном
Глубина проникновения определяется как величина, обратная коэффициенту затухания и зависит от частоты: чем больше частота, тем меньше глубина проникновения. В СВЧ диапазоне глубина проникновения в металлах имеет малую величину и тем меньше, чем больше проводимость металла и его магнитная проницаемость.
(2)
где -- абсолютная магнитная проницаемость материала экрана; f -- частота электромагнитного поля; -- удельная проводимость материала экрана.
Выражение для определения потерь на поглощение экраном толщиной d может быть представлено в следующем виде:
(3)
Таким образом, потери на поглощение растут пропорционально толщине экрана, магнитной проницаемости и удельной проводимости его материала, а также частоте электромагнитного поля.
Потери на отражение на границе раздела двух сред связаны с различными значениями полных характеристических сопротивлений этих сред. При прохождении волны через экран она встречает на своем пути две границы раздела -- воздух--металл и металл--воздух.
Хотя электрическое и магнитное поля отражаются от каждой границы по-разному, суммарный эффект после прохождения обеих границ одинаков для обеих составляющих поля. При этом наибольшее отражение при входе волны в экран (на первой границе раздела) испытывает электрическая составляющая поля, а при выходе из экрана (на второй границе раздела) наибольшее отражение испытывает магнитная составляющая поля. Для металлических экранов потери на отражение определяются выражением:
(4)
Откуда следует, что потери на отражение велики у экрана, изготовленного из материала с высокой проводимостью и малой магнитной проницаемостью.
Потери на многократные отражения в стенках экрана связаны с волновыми процессами в толще экрана и в основном определяются отражением от его границ. Для электрических полей почти вся энергия падающей волны отражается от первой границы (воздух--металл) и только небольшая ее часть проникает в экран. Поэтому многократными отражениями внутри экрана для электрических полей можно пренебречь.
Для магнитных полей большая часть падающей волны проходит в экран, в основном отражаясь только на второй границе (металл--воздух), тем самым, создавая предпосылки к многократным отражениям между стенками экрана. Корректирующий коэффициент Амотр многократного отражения для магнитных полей в экране с толщиной стенки d при глубине проникновения равен:
(5)
Величина Амотр имеет отрицательное значение, т.е. многократные отражения в толще экрана ухудшают эффективность экранирования. С уменьшением эффективности можно не считаться в случаях, когда на данной частоте выполняется условие d>, но им нельзя пренебрегать при применении тонких экранов, когда толщина экрана меньше глубины проникновения.
2. Экранирование узлов радиоэлектронной аппаратуры и их соединений

Экранирование высокочастотных катушек и контуров

При экранировании высокочастотных катушек и контуров аппаратуры необходимо учитывать не только эффективность экранирования соответствующего экрана, но и возможность ухудшения основных электрических параметров экранируемых элементов уменьшение индуктивности, увеличение сопротивления и собственной емкости. Вносимые экраном потери возрастают с увеличением удельного сопротивления материала экрана и с уменьшением расстояния между экраном экранируемой катушкой. В тех случаях, когда эквивалентное затухание контура определяется в основном затуханием катушки и необходимо иметь малое затухание, следует в качестве материала экрана применять немагнитные металлы (медь, латунь, алюминий), а размеры экрана выбирать по возможности большими.
При конструировании экранов следует располагать стыки, швы, щели в экране в направлении вихревых токов, определяющих эффективность экранирования. Экранирование электрического поля обеспечивается при наличии хорошего электрического контакта экрана с корпусом аппаратуры.
Экранирование низкочастотных трансформаторов и дросселей
В трансформаторах питания и низкочастотных трансформаторах, а также в дросселях питания основной рабочий магнитный поток проходит по магнитопроводу. Только небольшая его часть в виде потока рассеяния выходит за пределы магнитопровода, замыкаясь в окружающем пространстве. Магнитный поток рассеяния является причиной нежелательных наводок. Потенциально источниками наиболее интенсивных магнитных полей являются дроссели фильтров питания. Интенсивность полей рассеяния у всех типов трансформаторов растет с увеличением мощности, уменьшением сечения магнитопровода и высоты катушек, а также с ухудшением магнитных свойств магнитопровода.
Улучшение качества магнитопровода, достигаемое применением материалов с высокой относительной магнитной проницаемостью и уменьшением воздушных зазоров, приводит к уменьшению уровней нежелательных наводок.
Эффективное снижение уровней магнитных полей рассеяния трансформаторов и дросселей достигается экранированием. В диапазоне 50--4000 Гц эффективно действует экран из пермаллоя и других специальных сортов ферромагнитных материалов с высокой магнитной проницаемостью и малым удельным сопротивлением. Экранирующая коробка не должна плотно прилегать к сердечнику трансформатора. При зазоре примерно в 3 мм эффективность экранирования увеличивается на 15 дБ.
Контактные соединения и устройства экранов

При конструировании составных экранов, а также контактных элементов, предназначенных для соединения экранов, крышек, панелей, кронштейнов к общему корпусу или шасси аппаратуры, необходимо обеспечивать выполнение требований:
-- электрическое сопротивление контактов должно быть минимальным и стабильным;
-- контактные соединения должны иметь высокую коррозионную стойкость, длительный срок службы.
По своему назначению контактные соединения могут быть неразборными (неразъемными), разборными (разъемными), скользящими и т.д.
Неразъемные контактные соединения предназначены для постоянного соединения частей и элементов экрана. Эти соединения обычно бывают сварными или паяными. В контактных соединениях, осуществляемых сваркой (сплошные сварные швы), практически не происходит увеличения электрического сопротивления в месте сварки по сравнению с сопротивлением сплошного металла.
При пайке металлов припой, соединяясь с основными металлами, связывает их м и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.