Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Процесс электрографии на фильтрованной бумаге. Электрофорез движение заряженных частиц, находящихся в виде суспензии в жидкости. Декорирование с помощью коронного разряда. Сравнительная оценка параметров электрохимических методов обнаружения дефектов.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 03.02.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования Республики Беларусь
Белорусский государственный университет информатики и
радиоэлектроники
кафедра РЭС
РЕФЕРАТ
на тему:
«Электролитические и оптические методы контроля РЭСИ»
МИНСК, 2008
Электрография.
Электролит состоит из бензидина, поверхностно-активно о вещества и коллоида. Далее к ячейке прикладывают напряжение 5-10 В при 1 мкА и вы-держивают 5-10 мин. При приложении к ячейке напряжения неокрашенный раствор солянокислого бензидина окисляется с образованием темно-синих продуктов. После проведения процесса электрографии на фильтрованной бу-маге получается зеркальное изображение сквозных дефектов в виде темных пятен, форма и размер которых точно соответствует дефектам в диэлектриче-ской пленке. Процесс изображен на рисунке 1.
Электрофорез.
Электрофорез - движение заряженных частиц, находящихся в виде суспен-зии в жидкости, в электрическом поле между двумя электродами на одном из которых происходит осаждение частиц.
Процесс включает в себя: стадию заряда частиц, транспортирования в электрическом поле и осаждения. Положительно заряженными частицами оказываются частицы гидроокисей металлов, органических красителей, отри-цательно заряженными - частицы металлов, сульфидов и др. Ячейка для элек-трофореза представлена на рис. 2.
В качестве электролита используется ацетон или метиловый спирт. Расстояние между электродами 5 мм, время процесса 3 мин., напряжение до 80В.
При малой толщине окисла <<0,02 мкм наблюдаются дефекты, локализо-ванные непосредственно вблизи поверхности полупроводника (возможно, они возникли после механической полировки поверхности). До 0,04 мкм плот-ность выявленных дефектов возрастает, а затем быстро падает (рис.3).
Рисунок 1 - Принципиальная схема установки для электрохимической автогра-фии
1 - анод; 2 - кремниевая подложка;
3 - диэлектрическая пленка;
4 - мембранная бумага;
5 - катод.
Рисунок 2 - Испытательная ячейка для электрофореза
1 - исследуемая структура; 2 - электрододержатель;
3 - электролит; 4 - второй электрод (катод).
Рисунок 3 - Зависимость плотности дефектов от толщины слоя SiO2
Этот характер кривой можно объяснить дополнительным выявлением сквозных дислокаций через тонкую пленку окисла. При более толстом слое окисла d = 0,04 мкм эффект сквозных дислокаций ослабевает, выявляются только несквозные дефекты. При толщинах более 0,08 мкм выявляются де-фекты, образованные в результате осаждения пленок. Как видно из рис. 4 плотность пор, выявленная методом электролиза (нижняя кривая), много меньше плотности дефектов, выявленных электрофорезным декорированием (верхняя кривая), в связи с тем, что электролиз не способен выявить "скры-тые дефекты" и выявляет только сквозные поры. Электрофорез позволяет об-наруживать следующие виды дефектов: сквозные и несквозные поры окисла, скопления примесей вблизи поверхности.
Декорирование с помощью коронного разряда.
Этот метод является модификацией электрофорезного декорирования. На первом этапе процесса ионы коронного разряда осаждаются на поверхность образца и заряжают диэлектрические участки пленки. Этот заряд создает электрическое поле. Источником положительно заряженных ионов служит проволочная сетка, подсоединенная к высоковольтному источнику постоян-ного тока, обеспечивающему напряжение до ±10 кВ и ток до 6 мА. Сетка рас-полагается в 2 см над пластиной.
Рисунок 4 - Зависимость плотности дефектов от приложенного напряжения для методов
1 - электрофореза; 2 - электролиза.
На втором этапе образец погружается в суспензию, состоящую из заряжен-ных частиц.
При совпадении знаков зарядов осаждаемых частиц и диэлектрической пленки осаждение частиц идет в местах дефектов - происходит прямое деко-рирование, которое менее полезно, чем обратное, так как дефекты оказыва-ются закрытыми осадком.
При противоположных знаках зарядов частиц и диэлектрической пленки, частицы осаждаются всюду, кроме дефектов и окружающих их областей. Та-кой процесс называется обратным декорированием. Недостатком метода явля-ется необходимость работы с высокими напряжениями и необходимость тща-тельной очистки поверхности пластины.
Рисунок 5 - Схема процесса осаждения заряженных частиц на заряженную подложку
а) прямое декорирование; б) обратное декорирование
Сравнительная оценка параметров электрохимических методов обнаруже-ния дефектов в слоях двуокиси кремния представлена в таблице 1.
Таблица 1
Сравнительные характеристики параметров электрохимических ме-тодов контроля
Название метода
Чувствительность, мкм
Разрешающая способность, мкм
Электролиз (пузырьковый)
0,3
40-60
Электрография:
а) Цветные реакции
0,5
2-5
б) На фотобумаге
0,1 - 0,3
200 - 300
Электрофорез
0,1 - 0,3
10-30
Декорирование с помо-щью коронного разряда
1 -5
Оптический контроль
Оптические методы неразрушающего контроля основаны на анализе взаимо-действия оптического излучения с объектом контроля. Методы оп-тического контроля и области их применения приведены в ГОСТ 23479-79 и ГОСТ 24521-80.
Спектр оптических излучений подразделяется по длине волны на три уча-стка: инфракрасное излучение (от 1 мм до 780 нм), видимое излучение (от 780 нм до 380 нм) и ультрафиолетовое излучение (от 380 нм до 10 нм).
Разрешающая способность оптических методов:
где А - коэффициент преломления среды (материала между наблюдаемым
объектом и линзами);
л - длина волны.
2б - максимальный угол при вершине конуса лучей, попадающих в точку
изображения на оптической оси;
D - числовая апертура линз объектива;
F - фокусное расстояние;
D - диаметр апертуры (диафрагмы) (см. рис. 6).
Для самых лучших современных объективов величина А, в случае воздуха, может достигать 0.95, а при заполнении пространства между объектом и объ-ективом маслом эта величина может быть увеличена до 1,5. Разрешение самых лучших оптических микроскопов достигает 0,3 мкм. Оптическими методами можно контролировать качество кристаллов и оснований ИС, монтажа, свар-ных и паяных соединений, плёнок и т. д. Основные методы оптического кон-троля приведены в таблице 2.
Рассмотрим наиболее часто применяющиеся методы оптического контроля в технологии РЭСИ.
Визуально-оптически контроль.
Одними из наиболее распространённых приборов визуального контроля являются микроскопы - бинокулярный, стереоскопический и проекционный. Точность контроля объекта при работе с проекционным экраном несколько меньше, чем при наблюдении в окуляр.
Бинокулярные и проекционные микроскопы можно разделить на «эписко-пические», (для контроля в отражённых лучах) и диаскопические (для кон-троля в проходящих лучах).
Оптическая схема эпископического проектора представлена на рис. 7. Контроль осуществляется в светлом поле зрения. Основным недостатком яв-ляется малая яркость и недостаточная контрастность изображений.
Диаскопические проекторы представляют собой либо просмотровую лупу создающую мнимое, прямое, увеличенное изображение, либо проекционное устройство, создающее действительное, обратное, увеличенное изображение. Различают линзовые и зеркальные диаскопы. Оптическая схема линзового диаскопа представлена на рис. 8. Рассматривание кадра осуществляется при освещении либо от специального источника света с искусственной подсвет-кой, либо на каком-нибудь ярком фоне с естественной подсветкой. Оптиче-ская схема зеркального диаскопа представлена на рис. 9.
Интерферометрически контроль.
Среди интерферометрических выделяют три характерных метода.
Цветовой метод. Основан на свойстве тонких прозрачных плёнок, нане-сённых на отражающую подложку, менять свой цвет в зависимости от толщи-ны (явление интерференционных световых лучей, отражённых от границы раздела «плёнка -- воздух» и «плёнка -- подложка»). Цвета плёнок двуокиси кремния в зависимости от толщины приведены в таблице 3.
Рисунок 6 - Оптическая схема
Рисунок 7 - Оптическая схема эпископического проектора
Таблица 2
Оптические методы неразрушающего контроля и области их применения.


Название метода
Область при-менения
Контролируе-мые параметры
Чувст-витель-ность
Отно-ситель ная по-греш-ность, %
Факторы, ограничиваю-щие область применения
1. Визуальный
Дефектоскопия, контроль размеров
Дефектность, отклонение от заданной формы изделия
0,1 мм
-
Диапазон длин волн должен быть 0,38 - 0,76 мкм
2. Визуально -
оптический
Дефектоскопия с помощью микроскопов и проекционных устройств
Размеры изделий, дефектов, отклонений от заданной формы
0,6 А
0,1-1,0
Минимальная яркость объекта контроля не менее 1 кд/м2
3. Фотометрический
Контроль параметров осаждения тонких пленок
Интенсивность излучений, отражаемых или пропускаемых контролируемыми структурами
0,6 А
5
-
4. Реф-лексомет-рически
Контроль шероховатости поверхности изделий
Коэффициент отражения
0,6 А
1,0
-
5. Денси-тометри-ческий

Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.