Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Электромагнитные методы неразрушающего контроля. Особенности вихретокового метода неразрушающего контроля. Основные методы возбуждения вихревых токов в объекте. Дефектоскопы многоцелевого назначения. Использование тепловых метода неразрушающего контроля.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 03.02.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования Республики Беларусь
Белорусский государственный университет информатики и
радиоэлектроники
кафедра РЭС
РЕФЕРАТ
на тему:
«Электромагнитные и тепловые методы контроля РЭСИ»
МИНСК, 2008
Электромагнитные методы

Электромагнитные методы неразрушающего контроля основаны на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте. К особенностям вихретокового метода неразрушающего кон-троля относят:
- электрическую природу сигнала и быстродействие, что позволяет легко ав-томатизировать контроль;
- значительную скорость и простоту контроля;
- отсутствие необходимости электрического и даже механического контакта преобразователя с контролируемым объектом;
- возможность контроля слоев металла небольшой толщины, а также быстро движущихся изделий.
Существуют три основных метода возбуждения вихревых токов в объекте:
- помещение изделия в катушку (метод проходной катушки);
- накладывание катушки на изделие (метод накладной катушки);
-помещение изделия между первичной и вторичной катушками (экранный метод).
При пропускании через катушку переменного тока определенной частоты магнитное поле этой катушки изменяет свой знак с той же частотой. Если поме-стить изделие в поле этой катушки, то в нем возбуждаются вихревые токи, поле которых оказывает действие на поле возбуждающей катушки.
Существует несколько методов вихретокового контроля (ГОСТ 18353-79): амплитудный, фазовый, частотный, многочастотный.
Наибольшее применение нашли амплитудный и частотный методы.
Амплитудный метод применяют при наличии двух изменяющихся факторов, например, одновременном изменении зазора и электрической проводимости, один из которых нужно исключить. Такое исключение осуществляется фазовой настройкой.
Частотный метод часто используют, например, при измерении толщины сте-нок труб, когда необходимо отстроишься от измерения наружного диамера или электрической проводимости.
По чувствительности к трещинам вихретоковая дефектоскопия уступает маг-нитной. Выпускаемые отечественные электроиндуктивные дефектоскопы типа ДНМ-500, ДНМ-2000 с динамическим модуляционным методом регистрации, в которых накладная катушка вращается вокруг контролируемого изделия, позво-ляют получить сигнал большой амплитуды и выявить дефект с наименьшим полем рассеяния.
Указанные приборы применяют для выявления трещин протяженностью до 0,8 мм и глубиной > 0,1 мм в поверхностных слоях деталей под слоем краски и эмали, а также изделий из жаропрочных и коррозионностойких сталей.
Широкое распространение получили дефектоскопы многоцелевого назначе-ния типа ЭМИД. Эти приборы комплектуются набором проходных катушек - датчиков с внутренним диаметром от 5 до 100 мм, что позволяет контролировать многие изделия.
Например, для контроля труб, прутков, проволоки на наличие трещин, рако-вин, успешно применяется прибор ЭМИР-2М, в котором дефекты регистриру-ются визуально по изменениям фазы или амплитуды кривой на экране осцил-лографа, а также автоматически при наличии автоматической приставки. Ши-роко используют также дефектоскопы типа АСК-10(12), ИОС-1, ВК-ЗОС, ВД-20П, ИПП-1М, «Магнитоскоп» и др.
Тепловые методы

Тепловые методы неразрушающего контроля используют при исследовании теп-ловых процессов в РЭС, причем в большинстве случаев регистрируют поверхнос-тное тепловое или температурное поле объекта контроля, в пространственно-вре-м нной структуре которого содержатся «отпечатки» внутренних геометрических или теплофизических аномалий Согласно ГОСТ 23483-79 методы тепло-вого контроля (ТК) основаны на взаимодействии теплового поля объекта с термо-метрическими чувствительными элементами (термопарой, фотоприемником, жид-кокристаллическим термоиндикатором и т.д.), преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистости и др.) в элект-рический или другой сигнал и передаче его на регистрирующий прибор.
Необходимое условие применения ТК - отличие интегральной или локальной температуры изделий от температуры окружающей среды, которое создается либо искусственно с помощью внешних источников теплового нагружения (ИТН), либо в силу естественных причин при изготовлении или функционировании изделий.
Таблица 1
Основные объекты ТК в радиоэлектронике.
Объекты ТК
Дефекты
Примечание
Полупроводниковые изделия (транзисто-ры, диоды, тиристо-ры)
Дефекты p-n-перехода (по-верхностная деградация, электромиграция, межме-таллические соединения); неравномерная плотность тока; трещины, газовые пузыри между кристаллом и основанием, неоднород-ность состава исходного материала; дефекты тепло-отвода, диффузионной сварки; повреждения кри-сталла; обрыв проводов и короткие замыкания.
При интегральном спосо-бе ТК измеряют тепловое сопротивление. Наиболее перспективно импульсное питание, при котором определяют время тепло-вой устойчивости и пере-ходную тепловую харак-теристику. Исследование температурных рельефов и двухмерных теплограмм позволяет локализовать дефекты.
Интегральные схемы
Дефект теплоотвода; обрыв выводов; короткие замыка-ния; некачественная метал-лизация; сколы резистив-ной пленки; плохие адгезия и термокомпрессия; про-бой конденсаторов; объем-ные дефекты полупровод-ника.
Разрешение по площади составляет 20..50 мкм. Контроль проводят с по-мощью автоматизирован-ных систем, измеряя температуру в 50.. 10 точ-ках интегральной схемы при снятой крышке.
Многослойные пе-чатные платы
Утонение и коррозионный износ проводников; нека-чественная металлизация; отслоение проводников.
Используют импульсный нагрев электрическим током. Температурное поле имеет сложный вид и требует наличие этало-нов.
Резисторы
Локальное уплотнение; непроводящие включения; трещины.
Размер обнаруживаемого дефекта 15x15 мкм.
Конденсаторы
Пробой электролитических конденсаторов; замыкание слоев конденсаторов в микросхемах.
ТК осложнен небольшим излучением энергии и низким коэффициентом излучения.
Сборочные единицы и блоки радиоэлек-тронных средств
Неправильное включение элемента в схему; некаче-ствен-ный монтаж; неудач-ное размещение элементов на плате.
ТК рекомендуется при проектировании, изго-товлении и функциони-ровании узлов. Наиболее эффективен ТК при мас-совом производстве од-нотипных узлов. Разре-шение по площади - от долей миллиметра до не-скольких сантиметров. В основе отбраковки операторное или автома-тическое сравнение те-кущей термограммы с эталонной. Оптимизацию проводят путем выбора контрольных точек и тес-тового воздействия.
Проволока
Утонение; трещины
Используют контактный электронагрев и бескон-тактный СВЧ-нагрев. Скорость контроля до 4 м/мин. Способ чувстви-тельности к изменению проволоки от 20 до 30 мкм.
Катодные узлы
Неравномерность покрытия
Повышение температуры на 50..60 К уменьшает долговечность катода на порядок. Используют градуированные кривые.
Высокотемпературные и пленочные покры-тия
Отслоение от подложки, неравномерность покрытия
Наиболее чувствителен нестационарный ТК.
Контроль сварки вы-водов интегральной схемы с контактными площадками микро-плат.
Непроваривание выводов.
При стандартном точеч-ном воздействии темпе-ратурный отклик безде-фектного соединения лежит в определенном интервале.
С помощью методов ТК можно проводить анализ теплового режима элект-ронных схем, контроль измерения параметров цепей, качества элементов, авто-матический поиск неисправностей в РЭС.
Терминология ТК определена ГОСТ 18353-79, а классификация методов ус-тановлена ГОСТ 23483-79. Для ТК применяют пассивные и активные методы.
При пассивном ТК объекты испытаний не подвергают воздействию от внеш-него источника, и в местах потенциальных дефектов механических соединений токоведущих элементов путем опрессовки, скрутки, пайки и сварки возникает дополнительное электрическое сопротивление, которое обуславливает нагрев этого участка в соответствии с законом Джоуля - Ленца (рис. 1,а). Пассив-ным способом ТК объекта испытаний, характеризующимся аномальным выде-лением теплоты в месте потенциального дефекта, контролируют сборочные еди-ницы и компоненты радиоэлектронных средств (рис. 1,б).
При активном контроле объект подвергают воздействию от внешнего источ-ника энергии (1) (рис. 1, в). До проведения контроля температура изделия во всех точках одинакова (чаще всего равна температуре окружающей среды). При нагреве изделия, тепловой поток распространяется в глубь изделия, в месте га-зового дефекта испытывает дополнительное тепловое сопротивление. В резуль-тате этого наблюдается локальное повышение температуры на нагреваемой по-верхности, а на противоположной поверхности изделия, в силу закона сохране-ния энергии, знак температурного сигнала инвертируется.
Рисунок 1 - Пассивные (а,б) и активные (в) ТК.
1 - ИТН; 2 - изделие; 3 - дефект.
Пассивный контроль в общем случае предназначен:
- для контроля теплового режима объектов контроля;
- для обнаружения отклонений от заданной формы и геометрических разме- ров объектов контроля.
Активный контроль в общем случае предназначен:
- для обнаружения дефектов типа нарушения сплошности в объектах конт- роля (трещин, пористости, расслоений, инородных включений);
- для обнаружения изменений в структуре и физико-химических свойствах объектов контроля (неоднородность, теплопроводность структуры, теплоемкость и коэффициент излучения).
Схемы основных методов теплового контроля приведены в таблице 2.
Основные методы пассивного теплового контроля и области их применения приведены в таблице 3.
Основные методы активного теплового контроля и области их применения приведены в таблице 4.
Таблица 2
Основные методы ТК.
Метод контроля
Схема контроля
Активного Пассивного
Односторонний
Двухсторонний
Комбинированный
Синхронный
Несинхронный
Обозначения: 1 - источникнагрева; 2 - объект контроля; 3 - термочувствительный элемент.
Дефекты вызывают значительные перегревы отдельных областей ИМС или всего изделия в целом, что приводит к последующему его отказу. Поэтому контроль реальной картины теплового поля в изделии необходим для успеш-ного конструирования высоконадежных изделий. По времени действия разли-чают непрерывные и импульсные ИТН. Температурные поля регистрируют с помощью контактных (индикаторы на жидких кристаллах, термолюминофо-ры, термометры, термосопротивления и т. д.) и бесконтактных дистанционных ИК( радиометры, тепловизоры).
Критерии дефектности (КД), т.е. измеряемые или рассчитываемые физиче-ски и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.