На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Разработка электронного вольтметра переменного тока действующих значений, обеспечивающий измерение напряжения в заданном диапазоне. Выбор и обоснование схемы прибора. Расчет элементов и узлов прибора. Расчет усилителя. Описание спроектированного прибора.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 27.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ
Факультет Информатики и радиоэлектроники
Кафедра Информационных систем
и измерительных технологий
Специальность 200106
Задание
На курсовой проект
Подгорнову Олегу Павловичу
Шифр 6041012
Тема работы: Разработать электронный вольтметр переменного тока действующих значений, обеспечивающий измерение напряжения в заданном диапазоне
2. Исходные данные
Диапазон измерения, В: 10-3 - 300;
Диапазон частот, кГц: 0.02 - 200;
Входное сопротивление, не менее, МОм: 2.5;
Входная ёмкость, не более, пФ: 10;
Основная погрешность, %: 1.5;
Рабочий диапазон температур, оС: 10 - 45;
Напряжение питания, В: 220 ? 10 %.
3. Содержание пояснительной записки
3.1. Выбор и обоснование схемы прибора
3.2. Расчет элементов и узлов прибора (расчет принципиальной схемы)
3.3. Оценка погрешности
3.4. Описание прибора
4. Перечень графического материала
4.1. Структурная схема
4.2. Принципиальная электрическая схема
4.3. Чертеж печатной платы
4.4. Электромонтажный чертеж платы
4.5. Сборочный чертеж
5. Дата выдачи задания
6. Срок сдачи проекта
Задание выдал Мельников А.А.
(подпись)
Задание принял
Содержание
:
    1 Техническое задание
    2 Выбор и обоснование схемы прибора
    3 Расчет элементов и узлов прибора
      3.1 Расчет входного делителя
      3.2 Расчет преобразователя импеданса
      3.3 Расчет аттенюатора
      3.4 Расчет усилителя
      3.5 Расчет преобразователя действующих значений (ПДЗ)
    4 Оценка погрешности прибора
      4.1 Расчет погрешности входного делителя
      4.2 Расчет погрешности преобразователя импеданса
      4.3 Расчет погрешности аттенюатора
      4.4 Расчет погрешности ПДЗ
      4.5 Расчет погрешности усилителя
      4.6 Расчет основной погрешности прибора
    5 Описание спроектированного прибора
    6 Выводы по результатам проектирования
    7 Список использованной литературы
    Приложение A Справочные данные

1 Техническое задание

Разработать электронный вольтметр переменного тока действующих значений, обеспечивающий измерение напряжения в заданном диапазоне со следующими характеристиками (параметрами):
Диапазон измерения, В: 10-3 - 300;
Диапазон частот, кГц: 0.02 - 200;
Входное сопротивление, не менее, МОм: 2.5;
Входная ёмкость, не более, пФ: 10;
Основная погрешность, %: 1.5;
Рабочий диапазон температур, оС: 10 - 45;
Напряжение питания, В:220 10 %.
Выбор и обоснование схемы прибора
Электронные вольтметры переменного тока представляют собой сочетание выпрямляющего устройства (детектора), усилителя, измерительного механизма и выполняются по двум схемам:
“Детектор - Усилитель постоянного тока”.
Рис. 2.1
Данная схема имеет широкую область частот измеряемых напряжений с верхней границей порядка 0.5 - 1 ГГц, но обладает меньшей точностью и чувствительностью, чем электронные вольтметры, выполненные по второй схеме.
“Усилитель - Детектор”.
Рис. 2.2
Данная схема имеет более высокую чувствительность, нижний предел измерения порядка 1 мВ, класс точности порядка 1.5 - 2.5, но меньший диапазон частот измеряемых напряжений, верхняя граница частот не превышает 5 - 10 МГц.
Исходя из технического задания, выбираем вторую схему. Общая структурная схема проектируемого вольтметра представлена на рис. 2.3. Данная схема используется потому, что применение обратных связей, охватывающих несколько блоков, усложняет расчёт и настройку прибора.
Рис. 2.3
Первые четыре элемента, представленные на рис. 2.3, образуют масштабный преобразователь, следующие три - преобразователь действующих значений, а последний - измерительный механизм (ИМ).
Из-за сложности конструирования многопредельного входного высокоомного делителя и для получения требуемого входного сопротивления прибора и точности измерения, входной блок прибора строят на основе одноступенчатого входного делителя, повторителя напряжения и многоступенчатого низкоомного делителя (аттенюатора).
ВД - входной делитель. Представляет собой пассивный одноступенчатый делитель. Состоит из высокоомных сопротивлений, чтобы переключения ВД не сильно изменяли входное сопротивление прибора и корректирующих конденсаторов, чтобы коэффициент деления не зависел от частоты.
ПИ - преобразователь импеданса. Реализован на операционном усилителе КР140УД26 с полной обратной связью и представляет собой повторитель напряжения. Предназначен для согласования сопротивлений входного делителя и аттенюатора.
Атт. - аттенюатор. Осуществляет реализацию нескольких пределов измерения путем деления входной величины на разные коэффициенты. Строится таким образом, чтобы его выходное сопротивление не было в зависимости от предела измерения.
У - однопредельный активный усилитель с постоянным коэффициентом преобразования. Должен обладать малым дрейфом нуля, низким порогом чувствительности, большим диапазоном частот пропускания. Предназначен для получения необходимого коэффициента усиления. Для усиления только переменной составляющей тока перед усилителем необходимо расположить разделительную цепь, которая устранит постоянную составляющую тока.
Преобразователь действующих значений (ПДЗ) предназначен для преобразования переменного тока в постоянный. Может быть реализован двумя способами: с использованием логарифмирующих и антилогарифмирующих устройств; с помощью нелинейных преобразователей с квадратичной характеристикой и устройства, извлекающего квадратный корень. При использовании первого способа преобразователь получается достаточно сложным и имеет небольшую точность преобразования. Структура ПДЗ состоит из следующих трёх блоков:
Кв. ФП - квадратирующий функциональный преобразователь.
УУ - усредняющее устройство.
ФП ИК - функциональный преобразователь, реализующий извлечение квадратного корня.
В данном проекте ПДЗ выполнен на квадратичном преобразователе, основанном на множительно-делительном устройстве на управляемых проводимостях. На входе такого квадратичного преобразователя нет необходимости использовать устройство выделения модуля.
Расчет элементов и узлов прибора

1.1 Расчет входного делителя

Сопротивление входного делителя и входное сопротивление прибора должны быть не менее заданного в техническом задании входного сопротивления прибора, т.е. не менее 2.5 МОм.
Рис. 3.1
С резистора R2 на вход преобразователь импеданса подается напряжение UВЫХ, составляющее часть измеряемого напряжения UВX, задаваемое коэффициентом умножения K равным 0.001, т.е. входной делитель делит входное напряжение на 1000.
, (3.1.1)
где ;
RП - входное сопротивление преобразователя импеданса. RП 109 Ом.
Сопротивление RП >> (R2 + R3), поэтому можно считать, что R  (R2 + R3). Для обеспечения требуемого входного сопротивления прибора Rвх необходимо выполнение условия:
, (3.1.2)
где .
Следовательно,
. (3.1.3)
Зная входное сопротивление преобразователя импеданса RП и входное сопротивление Rвх электронного вольтметра, можно найти RД:
[МОм].(3.1.4)
Из формул (3.1.2) и (3.1.3) следует, что
[кОм].(3.1.5)
[МОм].(3.1.6)
При работе делителя напряжения из активных сопротивлений на переменном токе, коэффициент деления зависит от частоты в результате шунтирования сопротивлений паразитными ёмкостями. Для устранения этой зависимости необходимо осуществить частотную коррекцию путём шунтирования сопротивлений делителя ёмкостями C1 и C2. При этом:
, (3.1.7)
где C = C2 + CП;
CП - входная ёмкость преобразователя импеданса. CП 2 пФ.
Ёмкость конденсатора C1, в основном, определяет входную ёмкость электронного вольтметра Cвх. Приняв C1  Cвх, получим, что C1 = 10 пФ. Конденсатор C1 подстроечный, поэтому условие, заданное в техническом задании о значении входной ёмкости, выполнимо.
Исходя из условия (3.1.7), получим значение C2:
[нФ],(3.1.8)
Ограничительные диоды VD1 и VD2 предназначены для защиты преобразователя импеданса от перегрузки по напряжению. В качестве диодов используются Д311, прямое падение напряжения на которых составляет 0.4 В.
R1: С2-29В-0.25-2.49 МОм ± 0.5%
R2: С2-29В-0.25-2.49 кОм ± 0.5%
R3: РП1-85А-0.5-240 Ом ± 10%
C1: КТ4-25-250В-3…15 пФ ± 10%
C2: К71-6-300В-10 нФ ± 10%

1.2 Расчет преобразователя импеданса

Преобразователь импеданса, изображённый на рис. 3.2, основан на неинвертирующем повторителе напряжения. Его достоинством является высокое входное сопротивление.

Рис. 3.2
Ёмкость разделительного конденсатора C3 можно рассчитать по формуле:
. (3.2.1)
Согласно техническому заданию, нижняя граничная частота электронного вольтметра составляет 20 Гц, входное сопротивление ОУ КР140УД26 составляет 1 ГОм, следовательно
[пФ].(3.2.2)
R4: РП1-85А-0.5-10 кОм ± 10%
С3: К71-6-300В-390 пФ ± 10%

1.3 Расчет аттенюатора

Аттенюатор - это набор однотипных ячеек, представляющих собой симметричные четырехполюсники П- и Т-типов. Равенство и постоянство входных и выходных сопротивлений ячеек аттенюаторов облегчает согласование звеньев канала, через которые проходит преобразуемый сигнал. Затухание (коэффициент деления) в аттенюаторах можно изменять либо изменяя количество включенных ячеек (аттенюаторы с постоянными параметрами звеньев), либо изменяя параметры входящих в ячейки элементов (аттенюаторы с переменными параметрами звеньев).

Рис. 3.3

В электронных вольтметрах, как правило, применяются аттенюаторы с постоянными параметрами звеньев, в качестве которых используются П-образные четырёхполюсники.

Рис 3.4

Коэффициент затухания i-го четырехполюсника Ki определяется как отношение его выходного напряжения Ui к входному Ui+1:

. (3.3.1)
Коэффициент затухания K аттенюатора равен произведению коэффициентов затухания четырёхполюсников:
, (3.3.2)
где n - число четырёхполюсников.
Значение коэффициента затухания i-го звена Ki находится как:
. (3.3.3)
Сопротивление части схемы, находящейся слева от точки 1, согласно теории аттенюаторов, равно R0:
. (3.3.4)
Решая совместно полученные уравнения, получим:
, (3.3.5)
. (3.3.6)
Если аттенюатор должен работать на нагрузку Rн, сопротивление которой не бесконечно велико, принимают верным равенство R0 = Rн.
Диапазон измерения напряжения разрабатываемого электронного вольтметра от 1 мВ до 300 В. Определим количество пределов измерения, число ступеней и коэффициенты затухания аттенюатора.
Соотношение номинальных напряжений двух смежных пределов измерений выбираем равным .
Получим 12 пределов измерения:
№ предела
Диапазон, мВ
№ предела
Диапазон, В
1
0 - 1
7
0 - 1
2
0 - 3.16
8
0 - 3.16
3
0 - 10
9
0 - 10
4
0 - 31.6
10
0 - 31.6
5
0 - 100
11
0 - 100
6
0 - 316
12
0 - 316
Исходя из установленных пределов измерения электронного вольтметра и коэффициента деления входного делителя, напряжения на ступенях затухания аттенюатора Ui будут соответственно равны:
U1 = 1 мВ; U2 = 3.16 мВ; U3 = 10 мВ; U4 = 31.6 мВ; U5 = 100 мВ; U6 = 316 мВ.
В соответствии с уравнением (3.3.1),
.(3.3.7)
Тогда из формул (3.3.5) и (3.3.6):
;(3.3.8)
.(3.3.9)
Параллельно соединённые сопротивления могут быть заменены одним:
; ; ;
; ; .(3.3.10)
Зная входное сопротивление усилителя и приняв R0 = Rн = 20 кОм, по формулам (3.3.5) и (3.3.6) определим параметры сопротивлений аттенюатора.
[кОм];(3.3.11)
[кОм];(3.3.12)
[кОм].(3.3.13)
Особенностью аттенюаторов является то, что вне зависимости положения его переключателя, его входное и выходное сопротивления постоянны и равны R0.
Ёмкость разделительного конденсатора C4 можно рассчитать по формуле:
[нФ] (3.3.14)
Расчетные значения резисторов:
R5, R15: 13.18 кОм
R6, R8, R10, R12, R14: 28.43 кОм
R7, R9, R11, R13: 19.27 кОм
Номинальные значения:
R5, R15: С2-29В-0.25-13.2 кОм ± 0.1%
R6, R8, R10, R12, R14: С2-29В-0.25-28.4 кОм ± 0.1%
R7, R9, R11, R13: С2-29В-0.25-19.3 кОм ± 0.1%
С4: К71-6-300В-390 нФ ± 10%

1.4 Расчет усилителя

Усилитель представляет собой усилитель переменного напряжения, состоящий из двух каскадов, выполненных на ОУ OP37.

Рис 3.5

Коэффициент усиления выбирается исходя из максимального значения величины входного напряжения и величины тока максимального отклонения стрелки измерительного механизма.

В разрабатываемом устройстве применяется измерительный механизм типа М2027-М1, описание которого находится в Приложении А. Данный прибор имеет внутреннее сопротивление 3 кОм и ток полного отклонения стрелки 100 мкА.

Для уменьшения влияния температуры последовательно с ним ставится добавочное сопротивление, номинал которого в 5…10 раз больше внутреннего сопротивления. Принимаем Rдоб = 15 кОм.

Для полного отклонения стрелки измерительного механизма необходимо приложить напряжение, вычисляемое по формуле:

[В].(3.4.1)
Максимальное напряжение, поступающее на вход усилителя равно 1 мВ, тогда общий коэффициент усиления равен 1800. Принимаем коэффициент усиления первого каскада К1 = 40, а коэффициент усиления второго каскада К2 = 45. Примем R16 и R20 равными 20 кОм. Тогда
R17 = K1•R17 = 40•20 = 800 [кОм]. (3.4.2)
R21 = K2•R20 = 45•20 = 900 [кОм]. (3.4.3)
Номиналы резисторов R18 и R22 вычисляются по формулам:
[кОм].(3.4.4)
[кОм].(3.4.5)
Ёмкость разделительного конденсатора C5 можно рассчитать по формуле:
[нФ](3.4.6)
R16, R20: С2-29В-0.25-20 кОм ± 0.5%
R17: С2-29В-0.25-806 кОм ± 0.5%
R18: С2-23-0.25-20 кОм ± 10%
R19, R23: РП1-85А-0.5-10 кОм ± 10%
R21: С2-29В-0.25-898 кОм ± 0.5%
R22: С2-23-0.25-20 кОм ± 10%
C5: К71-6-300В-390 нФ ± 10%

1.5 Расчет преобразователя действующих значений (ПДЗ)

Преобразователи действующих значений напряжений могут быть реализованы двумя методами: с использованием логарифмирующих-антилогарифмирующих устройств, но преобразователь получается сложным и невысокоточным; с помощью преобразователей с квадратичной характеристикой и извлекающей квадратный корень. Чаще пользуются вторым методом.

Структурная схема ПДЗ состоит из устройства выделения модуля (УВМ), квадратирующего функционального преобразователя (КФП), усредняющего устройства (УУ) и функционального преобразователя, реализующего извлечение квадратного корня ().

Рис. 3.6

В качестве УВМ входного напряжения в зависимости от граничных значений частоты могут использоваться активные или пассивные преобразователи средних значений (ПСЗ).

В качестве КФП применяются преимущественно терморезисторные, термоэлектрические преобразователи и функциональные преобразователи с естественной нелинейностью характеристик и кусочно-линейной аппроксимацией параболы.

В качестве УУ могут использоваться активные и пассивные фильтры нижних частот.

В данном проекте КФП выполнено на основе множительно-делительного устройства (МДУ) на управляемых проводимостях. На входе такого КФП нет необходимости использовать УВМ. Схема МДУ приведена на рис. 3.7.

Рис. 3.7

МДУ состоит из усилителя рассогласования на операционном усилителе (ОУ) DA4, двух полевых транзисторов VT1 и VT2, расположенных в одном корпусе, преобразователя напряжение-ток на ОУ DA5, преобразователя ток-напряжение на ОУ DA6 и двух источников питания на U0 и E.

Модуль напряжения стабилизации стабилитронов 2С156В VD3 и VD4 Uст = 5.6 В, а ток стабилизации Iст = 5 мА. Следовательно, номиналы сопротивлений R24 и R25 можно определить по формуле:

[Ом](3.5.1)
Значения напряжений U0 и E равны соответственно +5.6 В и -5.6 В.
Выходное напряжение усилителя рассогласования DA4 управляет проводимостями каналов полевых транзисторов VT1 и VT2 таким образом, чтобы сохранить напряжение на его инвертирующем выходе близким к нулю. При этом i1 + i2 = i3. Откуда
.(3.5.2)
Так как характеристики полевых транзисторов VT1 и VT2 идентичны, то проводимости их каналов равны, то есть g1 = g2 и
. (3.5.3)
Ток i5 на выходе преобразователя напряжение-ток при выполнении условия
(3.5.4)
равен
.(3.5.5)
Постоянная составляющая напряжения на выходе DA6 будет равна
.(3.5.6)
Резистор R26 выбирается исходя из минимально допустимого сопротивления нагрузки для источника входного сигнала Uвх. Так как в качестве него обычно используют электронные усилители, то R26 целесообразно брать большим 10 кОм. Резистор R32 можно брать равным резистору R26. Существенно увеличивать резистор R26 не следует, так как лучшие результаты получаются при больших токах i1, i2, i3, которые не превышают 1 мА. Поэтому, при выборе R26 надо ориентироваться на выполнение неравенств:
[А]; (3.5.7)
, (3.5.8)
где Rдоп - минимальное сопротивление нагрузки источника входного сигнала.


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.