Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


Реферат Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации. Одним из оптоэлектронных приборов является оптрон, принцип действия которого состоит в преобразовании электрического сигнала в оптический.

Информация:

Тип работы: Реферат. Предмет: Схемотехника. Добавлен: 07.01.2009. Год: 2009. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство образования Республики Беларусь
Учреждение образования
“Белорусский государственный университет
информатики и радиоэлектроники”
кафедра ЭВС
РЕФЕРАТ
На тему:
«Элементы оптоэлектронных устройств»
МИНСК, 2008
1. Оптоэлектронный переключатель представляет гибридную микросхему, содержащую оптоэлектронную пару и усилитель. В переключателе используются высокоэффективные светодиоды на основе apceнида галлия, легированного кремнием, и быстродействующие кремниевые p-i-n-фотодиоды. Иммерсионной средой является халькогенидное стекло с показателем преломления 2,7. Коэффициент передачи тока в оптоэлектронной паре составляет 3--5 при нормальной температуре, времена включения (сумма времен задержка и нарастания фронта) 100--250 пс, гальваническая развязка цепи светодиода и фотоприемника по постоянному току 109 Ом. Микросхема выполнена в круглом металлостеклянном корпусе типа ТО-5.
2. Оптоэлектронный ключ предназначен для коммутации высоковольтных цепей переменного и постоянного токов. Он имеет четыре независимых канала, каждый из которых содержит две оптоэлектронные пары, состоящие из светодиода и высоковольтного p-i-n-фотодиода. Фотодиоды соединены встречно-последовате ьно, поэтому сопротивление ключа в запертом состоянии (в отсутствие тока через светодиоды) независимо от полярности приложенного напряжения определяется темновым сопротивлением смещенного в обратном направлении p-i-n-фотодиода; значение его составляет примерно 109 Ом.
3. Транзисторный ключ предназначен для коммутации постоянных напряжений до 50 В. Прибор имеет два независимых канала, каждый из которых содержит оптоэлектронную пару, состоящую из арсенидгаллиевого светодиода и кремниевого n-p-i-n-фототранзистора. Оптоэлектронная пара имеет коэффициент передачи тока 2, номинальный рабочий ток 10 мА, быстродействие в режиме усиления 100--300 нс.
4.Коммутатор аналоговых сигналов предназначен для применения в системах селективной обработки аналоговых сигналов. Электрическая схема одного канала коммутатора приведена на рис. 1. Канал содержит оптоэлектронную пару, состоящую из арсенидгаллиевого светодиода и двух встречно включенных n-i-n-фотодиодов, выполненных в одном монокристалле.
Рис. 1. Электрическая схема оптоэлектронного коммутатора аналоговых сигналов
На рис. 2 показаны электрические схемы некоторых других типов оптоэлектронных микросхем. Ключевая микросхема (рис. 2, а) включает в себя быстродействующую диодную оптоэлектронную пару, согласованную с монолитным кремниевым усилителем. Она предназначена для замены трансформаторных и релейных связей в логических устройствах ЭВМ и дискретной автоматики. Аналоговый ключ (рис. 2, б) относится к линейным схемам с оптоэлектронным управлением. При мощности управляющего сигнала 60--80 мВт параметры прерывателя достигают значений, необходимых для стандартных полупроводниковых микросхем. Оптоэлектронные маломощные реле постоянного тока (рис. 2, в) предназначены для замены аналоговых электромеханических реле с быстродействием в миллисекундном диапазоне и гарантируемым числом срабатываний 104--107.
Рис. 2. Электрические схемы некоторых типов оптоэлектронных микросхем: а - ключевая микросхема; б - аналоговый ключ; в - реле постоянного тока.
Рис. 3. Электрическая схема оптоэлектронных микросхем серии 249
Представляют интерес оптоэлектронные микросхемы серии 249, в которую входят четыре группы приборов, представляющих собой электронные ключи на основе электролюминесцентны диодов и транзисторов. Электрическая схема всех групп приборов одинакова (рис. 3). Конструктивно микросхемы оформлены в прямоугольном плоском корпусе интегральных микросхем с 14 выводами и имеют два изолированных канала, что уменьшает габариты и массу аппаратуры, а также расширяет функциональные возможности микросхем. Светодиоды выполнены на основе кремния и имеют п+-p-ni-n+-структуру. Наличие двух каналов в ключе позволяет использовать его в качестве интегрального прерывателя аналоговых сигналов и получать высокий коэффициент передачи сигнала (10--100) при включении фототранзисторов по схеме составного транзистора.
Оптоэлектронные приборы
Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.
Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.
Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:
полной гальванической развязкой «вход - выход» (сопротивление изоляции превышает 1012 - 1014 Ом);
абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы - фотоны);
однонаправленностью потока информации, которая связана с особенностями распространения света;
широкополосностью из-за высокой частоты оптических колебаний,
достаточным быстродействием (единицы наносекунд);
высоким пробивным напряжением (десятки киловольт);
малым уровнем шумов;
хорошей механической прочностью.
По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).
В оптронных приборах применяют полупроводниковые источники излучения - светоизлучающие диоды, изготовляемые из материалов соединений группы АIII BV, среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 - 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.
Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.
Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p-n-переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.
Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1, а инфракрасного диапазона - в табл. 2.
Таблица 1 Основные характеристики светоизлучающих диодов видимого диапазона
Тип диода
Яркость, кд/м2, или сила света, мккд
Постоянное прямое напряжение, В
Цвет свечения
Постоянный прямой ток, мА
Масса, г
КЛ101 А - В
АЛ102 А - Г
АЛ307 А - Г
10 - 20 кд/м2
40 - 250 мккд
150 - 1500 мккд
5,5
2,8
2,0 - 2,8
Желтый
Красный, зеленый
Красный, зеленый
10 - 40
5 - 20
10 - 20
0,03
0,25
0,25
Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды - полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала и т.д.................


Смотреть работу подробнее



Скачать работу


Скачать работу с онлайн повышением оригинальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.