На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Проектирование радиоэлектронной системы передачи непрерывных сообщений с подвижного объекта по радиоканалу на пункт сбора информации. Расчет параметров преобразования сообщений и функциональных устройств. Частотный план системы и протоколы ее работы.

Информация:

Тип работы: Курсовик. Предмет: Схемотехника. Добавлен: 07.07.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство общего и профессионального Российской Федерации
Уральский Государственный Технический Университет

Пояснительная записка к курсовому проекту

по дисциплине РЭСТК

«Эскизное проектирование радиоэлектронной

системы передачи информации»

Екатеринбург 2002

Содержание

    1. Задание на проектирование 3
    2. Расчет параметров системы
    5
      2.1 Расчет параметров преобразования сообщений. 5
        2.1.1 Параметры сообщения. 5
        2.1.2 Выбор ошибок преобразования. 5
        2.1.3 Параметры преобразованных сообщений. 7
      2.2 Расчет энергетических характеристик 12
      2.3 Расчет требуемой мощности излучаемого сигнала.
      13
      2.4 Основные параметры приемной и передающей антенн.
      15
    3. Сводные результаты расчета и выбора параметров функциональных устройств. 17
    4
    . Частотный план системы 18
      4.1 Канал трафика (передача информации с объекта на ЦП). 18
      4.2
      Канал управления 19
    5. Протоколы работы системы 22
      5.1 Протокол установления связи. 22
      5.2
      Протокол окончания сеанса 23
    Библиографический список 24
    Приложение.1.
    25
    Приложение.2.
    26

1. Задание на проектирование

Спроектировать радиоэлектронную систему передачи непрерывных сообщений с подвижного объекта по радиоканалу на пункт сбора информации. В качестве источников сообщений рассматривается совокупность процессов, характеризующих состояние параметров объекта и окружающей среды. Источники сообщений находиться на «борту» шар-зонда. Пункта сбора информации (Ц.П.) находится на земле.
Характеристики проектируемой системы
1. Характеристики аналоговых сообщений
· Нормированная плотность распределения мгновенных значении сообщения:
· Средне квадратичное отклонение:
· Вид преобразования аналогового сообщения: ДИКМ
· Спектральная плотность аналогового сообщения:


· Суммарная ошибка преобразования аналогового сообщения в цифровое:

2. Параметры радиолинии передачи информации с объекта
· Число каналов (датчиков) объекта: N=8
· Вид модуляции: АМн
· Число «м» сигналов: м=2
· Допустимое значение вероятности ошибки воспроизведения символа дискретного сообщения: =20*10-7
· Надежность связи: =0.8
3. Параметры радиолинии объект-ЦП
· Максимальный радиус зоны обслуживания: = 60 км
· Рабочая длина волны: = 50 см
4. Организация доступа к Ц.П.
Непрерывные сообщения, преобразованные в цифровую форму, передаются на Ц.П. пакетом длительностью 40 сек. по многоканальной коммутируемой радиолинии по запросу объекта
· Число физических радиоканалов Ц.П: Nрк=5
· Метод свободного доступа в Р.Л. Св.: ЧРК
· Средняя интенсивность вызовов Rв=3.5 вызова/час
· Вероятность отказа в обслуживании: pотк.= 0,02
· Среднее время сеанса связи: nв=4 с
5. Коррекция ошибок в радиолинии
Оценить качество приёма цифрового сигнала при использовании блочного избыточного кодирования, с числом проверочных символов не превышающим 10% от длины блока. Реализовать по выбору один из способов коррекции ошибок - исправление, обнаружение с переспросом блоков, их стиранием, изменением мощности передатчиков объектов и т.д. Отразить эту функцию в структурной схеме объекта и Ц.П. и в протоколе работы радиолинии, оценить эффективность кодирования.
2. Расчет параметров системы

2.1 Расчет параметров преобразования сообщений

2.1.1 Параметры сообщения

При кодировании непрерывных сообщений с помощью ДИКМ возникают ошибки временной дискретизации
?1, ограничения динамического диапазона ?2, квантования сообщения ?3.

2.1.2 Выбор ошибок преобразования

Для расчета основных параметров требуется выбрать соотношение между ошибками преобразования.

- Ошибка временной дискретизации ?1:

Результатом ДИКМ является цифровой сигнал, несущий информацию о величине и знаке приращения между двумя соседними отчетами сообщения или разность между истинным и предсказанным значением отсчета по ограниченному числу предыдущих значений сообщения.
Эта операция приводит к резкому уменьшению разрядности сигнала, но и к повышению частоты дискретизации, которая вычисляется по формуле:
, (2.1)
где Fв - верхняя частота спектра сообщения после ограничения, которая находится по формуле:
?1 (2.2)
в итоге, задавая значения ?1, с помощью Mathcad вычисляем значения Fd.
- Ошибка ограничения динамического диапазона ?2:
Динамический диапазон Ymax будет определятся заданной ошибкой ограничения динамического диапазона:
(2.3)
- Ошибка квантования сообщения ?3:
Шаг квантования будет определяться заданной ошибкой квантования ?3. (4.2.2) [1].
, (2.4)
Результатом правильного выбора ошибок преобразования, должна явится минимизация полосы частот радиолинии fрл=min, что в достигается в основном, при максимальной длительности разряда цифрового сигнала n =max. (формула 4.2.9. [1]). Из формулы видно что это условие достигается, при неизменности прочих условий (Nc), минимизацией Fd, Ymax и максимизацией hк, (это следует из выражения 4.2.4., 4.2.9. [1]), Эти условия позволяют определиться с выбором ошибок, даже не зная Nc.
Произведем расчет Fв, Fd, Ymax и hk для разных вариантов распределения ошибок используя формулы (2.1 - 2.4). Учтем, что распределение ошибок выбирается из условия:
(2.5)
Наиболее оптимальным является вариант, когда: =/3=/3=/3
Полученные результаты позволяют выбрать следующие значения:
?1=0.017
?2=0.017
?3=0.017
Fd=1.465*103 Гц,
Fв=160 Гц,
hk=0.2
H=Ymax=4.1
Xm=13.12

2.1.3 Параметры преобразованных сообщений

Проведем расчет основных параметров:

- эквивалентная полоса частот w, определяемая из уравнения:

- число уровней квантования m:

, возьмем m=13,

- число разрядов двоичного кода n:

, значит n=4,

- длительность канального сигнала Тк.

Тк определяется частотой следования отсчетов оцифрованного сигнала, для правильного восстановления сообщения на приемной стороне.

- длительность разрядного импульса ?п:

-

где:

N=8 - количество датчиков на объекте.

где Nс - число служебных разрядов, рассчитывается по формуле

где Nадр - число разрядов адреса объекта

Nпук - число разрядов помеха устойчивого кода

Nдоп - число дополнительных разрядов (преамбула, разделительные, признак канала трафика или канала управления, защитный бланк)

Разрядность адреса находится из максимально допустимой нагрузки на систему А (Эрл/ч), которая находится при заданной вероятности отказа Pотк=0.04, из графика [1]:

, отсюда

значит, система может обеспечивать работу 42 шаров-зондов.

Тогда разрядность адреса составит 6 бит.

Число проверочных разрядов выбираем из соотношения
бит
В результате получим помеха устойчивый код (nk.kk)=(88.81), где kk получается из
бит
Минимальное кодовое расстояние этого кода d=4 получено из соотношении и
где r=Nпук
Соотношение называется граница Хеминга и является необходимым условием, а достаточным условием или границей Варшамова-Гильберта
Этот код из ходя из (минимального кодового расстояния) может обнаруживать ошибки кратностью a=2 и исправлять ошибки кратностью b=1.
Определим вероятность не обнаружения ошибок данным кодом, которая вычисляется по формуле (8.28 [2]).
полученное значение, показывает, что при заданной РД ошибки кратности 3 и выше возникают с очень малой вероятностью.
Определим вероятность появления ошибок, которые код обнаруживает, но не может исправить. Т.е. ошибки кратности 2 по формуле (8.27 [2]).
полученная вероятность ошибки мала.
Полученные результаты позволяют сделать вывод:
· полученный систематический код обнаруживает практически все ошибки.
· исправляет практически все из обнаруженных ошибок.
· всем этим обеспечивается высокая помехоустойчивость передачи.
Поэтому в рассматриваемой системе будет реализован следующий способ коррекции: все ошибки кратностью один исправляются, а остальные пакеты в которых есть ошибки кратностью два и больше будут стираться.
Число дополнительных разрядов возьмём Nдоп=8 бит.
В служебные разряды должны включаться и биты синхронизации, но в данной системе применяется отдельный канал синхронизации, который будет описан позже.
В результате по формуле получим
бит.
Тогда длительность одного разряда
мкс.
- скорость передачи цифрового сигнала, объем передаваемой информации


скорость передачи системы будет больше чем у систем передачи речи. Объем передаваемой информации невелик, значит ЗУ объекта будет дешевым.
- полоса частот группового сигнала ?f?.


- Параметры модуляции во второй ступени.
Во второй ступени модуляции используется двухпозиционная АМн. Выберем коэффициент амплитудной модуляции:
ma= 2
- полоса частот радиолинии ?fрл.
В разрабатываемой системе используется частотное разделение каналов, тогда:

где ?=0.7 - коэффициент, зависящий от формы импульса и способа обработки сигнала в приемнике.
Коэф.=1.1 - коэф. Учитывающий взаимной нестабильности несущей частоты излучаемого сигнала и частоты настройки приемника и доплеровского сдвига.
2.2 Расчет энергетических характеристик

Качество выделения информации приемным устройством цифровой системы передачи информации, связано с вероятностью ошибки приёма разряда сообщения. Связь между допустимым значением вероятности ошибки Рд и пороговым отношением мощности сигнала к мощности шума h2пор =q2 для двухпозиционной ЧМн при некогерентном приеме может быть представлена в виде:
,
из данного выражения выделим пороговое отношение h2пор:

h2пор позволяет рассчитать необходимую мощность сигнала на входе приемника, если известна мощность его шумов. Но и и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.