На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


Реферат Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 02.01.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


- 16 -
СОДЕРЖАНИЕ:

Введение……………………………………………………………………..…… 3
1. Генетика и эволюция…………………………………………………...…. 5
2. Генная инженерия. Научно-исследовательские аспекты……………… 9
3. Генная инженерия. Практические результаты………………………… 12
Заключение……………………………………………………………………… 14
Литература…………………………………………………………………...…. 15
Приложение………………………………………………………………..…… 16
ВВЕДЕНИЕ:

Генетика вначале была использована для борьбы против дар-винизма. Устойчивость генов трактовалась как их неизменность. Мутационная изменчивость отождествлялась непосредственно с видообразованием и, как казалось, как будто отменяла есте-ственный отбор в качестве главного фактора эволюции. Но уже к концу 20-х годов XX в, становилось все яснее, что генетика раскрывает конкретный механизм изменчивости, соотношение свойств организма и характера внешних воздействий в возник-новении индивидуальных изменений.
Основатель мутационной теории Гуго де Фриз считал, что каждая мутация ведет к возникновению нового вида и сводил эволюцию к простому накоплению мутаций. На самом деле мутации лишь поддерживают наследственную неоднородность популяций и других эволюционных групп. Но это необходи-мое, но еще недостаточное условие эволюционного процесса. Необходимы также необратимые изменения среды -- как абио-тические по своему происхождению изменения климата, го-рообразование и т.п.), так и биогенные, порожденные самой жизнью, к которым присоединились антропогенные, обуслов-ленные человеческой деятельностью.
Важную роль в объединении генетики и эволюционной тео-рии, в разработке генетики популяций, сыграли С.С. Четве-риков, Н.П. Дубинин и другие русские ученые. В 40-50-е годы XX в. И.И. Шмальгаузен, опираясь на достижения гене-тики, конкретизировал учение о естественном отборе, выде-лив две его формы: стабилизирующий отбор и ведущий отбор.
Генетика -- наука о наследственности, способах передачи признаков от родителей к детям, о механизмах индивидуаль-ной изменчивости организмов и способах управления ею.
Ис-ходные законы наследственности были открыты чешским уче-ным Грегором Менделем в 1865 г. и переоткрыты независимо от него Гуго де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии. Они и есть основа-тели генетики. Вторым крупнейшим этапом в истории генети-ки явилось обоснование Г. Морганом хромосомной теории на-следственности, согласно которой основную роль в передаче наследственной информации играют хромосомы клеточного ядра.
Важнейшим в генетике является понятие «ген». Ген внача-ле представляли чисто формально, вроде счетной единицы. Потом установили, что ген -- участок цепочки ДНК и он сам имеет сложную структуру. Число возможных различ-ных сочетаний четырех органических оснований по длине це-почки ДНК составляет гигантскую величину 410 000, которая пре-вышает число атомов в Солнечной системе. На основе такого разнообразия действительно может возникнуть практически бес-конечное число наследственных изменений, обеспечивающих эволюцию и разнообразие органического мира. Наследствен-ность обеспечивает преемственность живого на Земле, а из-менчивость -- многообразие форм жизни. И то, и другое свя-заны неразрывно.
Генетика различает основные формы изменчивости; генотипическую, передаваемую по наследству, и фенотипическую, не передаваемую по наследству. Наиболее ярко наследствен-ная изменчивость проявляется в мутациях -- перестройках на-следственного основания, генотипа организма. Крупная мута-ция всегда выражается в форме более или менее резкого на-следственного морфофизиологического уклонения единствен-ной особи среди многих других, остающихся неизменными. Но в большинстве случаев мутации имеют вид небольших ук-лонений.
Важно понять, что мутации сами по себе не являются при-способительными изменениями, непосредственно направлен-ными на выживание организмов в данных определенных усло-виях. Они возникают случайно, хотя и под воздействием внут-ренней и внешней среды, т.е. не беспричинно. Они зависят от условий среды и могут быть получены специальным воздей-ствием ионизирующей радиации, химических реагентов и т.п.
Но экспериментально получаемые мутации тоже не носят ха-рактера адаптивных изменений. Адаптации, приспособления создаются лишь в результате отбора.
Сначала под генотипом понимали систему всех генов, вхо-дящих в состав клеток, сейчас объем этого понятия сужен до совокупности хромосомных ДНК организма, а совокупность всех генов называют геномом.
Под генотипом следует понимать только наследственную структуру организма. Понятие же фенотипа обозначает сово-купность доступных наблюдений индивидуальных признаков особи. Один из создателей современной генетики академик Н.П. Дубинин сравнивает соотношение генотипа и фенотипа с соотношением сущности и явления, подчеркивая большую ус-тойчивость генотипа и подвижность, текучесть фенотипа. Фе-нотип является результатом взаимодействия генотипа и среды, поэтому он может быть сложнее и многообразнее генотипа.
Индивидуальное развитие живого организма от зарождения до смерти осуществляется под влиянием как генетических про-грамм и подпрограмм, так и внешних условий. Из-за этого одинаковая генетическая основа (генотип) не всегда приводит к формированию организмов с одинаковым фенотипом, оди-наковым набором свойств. У организма складываются такие признаки, которые облегчают его существование именно в дан-ных конкретных условиях. Удачные приспособительные изме-нения (смена сезонной окраски, усиление или ослабление теп-лого шерстного покрова и т.п.) регулируются естественным отбором, обеспечивая выживание организмов с генотипами, способными оптимально реагировать на изменение внешней среды.

1. ГЕНЕТИКА И ЭВОЛЮЦИЯ.

Понять сущность эволюционных процессов помогает генетика -- наука о наследственности, изменчивости организмов и методах управления ими.
Ген является элементарной единицей наследственности. Задачами генетики являются:
изучение структуры единиц наследственности (генов);
анализ механизма функционирования генов;
реализация генетической информации (в частности, для увеличения производительности животноводства и сельхоз-структур);
анализ функционирования генов на разных этапах разви-тия организма.
Таким образом, генетика изучает два фундаментальных свой-ства живых систем - наследственность и изменчивость.
На сегодня известно, что гены и хромосомы (генотип -- со-вокупность наследственных структур) определяют фенотип -совокупность всех признаков организма, который является ре-зультатом взаимодействия генотипа и окружающей Среды (пи-тание., температура, радиация и др.).
Перестройку гена называют мутацией.
Новый организм, но-ситель мутации -- мутант, а факторы, вызывающие эти измене-ния, -- мутагены.
Наиболее сильное влияние из факторов окружающей Среды (в сотни раз сильнее других) оказывают радиоактивные элемен-ты, а количество мутаций пропорционально дозе облучения, что доказал американский генетик К. Миллер, работавший с луча-ми Рентгена1.
В познании закономерностей наследственности существен-ную роль сыграл чешский исследователь Г. Мендель (1822 -18 84), сформулировавший законы наследственности. Доказано, что признаки организмов определяются дискретными наследствен-ными факторами.
Хромосома любого организма содержит длинную непрерыв-ную цепь ДНК, несущую множество генов.
__________________________________________________________________
1 В. Рентген (1845--1923), немецкий физик.

Установлены принципиальные их характеристики, имеющие всеобщее и фундаментальное значение, например дискретность и линейное расположение в хромосоме. Другие определенные закономерности, например расщепление признаков в потом-стве гибридов, отмечены только у диплоидных эукариотических организмов.
Методы генетического анализа очень разнообразны, одним из первых является гибридологический. Суть его заключается в скрещивании организмов, отличающихся друг от друга по од-ному или нескольким признакам, и детальном анализе потом-ства.
Такие исследования позволили Г. Менделю сформулиро-вать законы наследования.
Первый, или закон единообразия:
У гибридов первого поколения проявляются признаки толь-ко одного родителя (доминантный признак), не проявляющие-ся при этом признаки Мендель назвал рецессивными.
Второй, или закон расщепления:
В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления; в случае полно-го доминирования четверть особей из гибридов второго поко-ления имеет рецессивный признак, три четверти -- доминант-ный.
Третий или закон независимого комбинирования:
Расщепление по каждой паре генов идет независимо от дру-гих пар генов. Этот закон справедлив только в случаях независимого на-следования, когда гены, отвечающие за эти признаки, располо-жены в разных парах гомологичных хромосом.
Понятие наследования признака употребляют обычно как образное выражение, так как наследуется лишь ген, отвечаю-щий за этот признак. Признаки формируются в ходе индивиду-ального развития организма и обусловливаются генотипом и влиянием внешней среды.
Законы генетики носят статистический характер, так как при образовании зиготы сочетание генов имеет случайный харак-тер, а ожидаемый результат скрещивания будет выполняться тем точнее, чем больше число потомков.
Признаки организма (способы их описания с целью разли-чия) можно разделить на две группы -- качественные и коли-чественные.
Качественными называют признаки, устанавлива-емые описательным (биологическим) путем (окраска, форма, масть, половые различия). Наследование качественных призна-ков происходит по законам Менделя.
Изменчивость (разнообразие) в целом носит не только каче-ственный, но и количественный характер, который определяет-ся измерением (яйценоскость, масса семян...), Большинство при-знаков, важных при разведении животных и выращивании рас-тений, носит количественный характер.
Живые организмы постоянно испытывают воздействие раз-нообразных факторов Среды обитания. Среда может влиять на формирование как количественных, так и качественных при-знаков. Среда приводит к естественному отбору как фактору эволюции в результате борьбы за существование. Он основыва-ется на преимущественном выживании наиболее приспособлен-ных особей каждого вида и гибели менее приспособленных. Под борьбой за существование понимают внутривидовую и межви-довую конкуренцию, отношения хищник-жертва, взаимодей-ствие с абиотическими факторами Среды и т. д. Однако наряду с конкуренцией существует и взаимопомощь у особей в преде-лах вида.
В процессе эволюции происходит направленное изменение фенотипа и генотипа вследствие размножения организмов. При-способленность к определенным условиям Среды не означает прекращения естественного отбора в популяций. Существует форма отбора, которая постоянно исключает уклоняющихся от нормы особей, -- так называемый стабилизирующий отбор.
К середине XX века эволюционная теория Дарвина была дополнена следующими положениями: отрицание наследования приобретенных признаков; доказательство постепенности эво-люционного процесса; осознание эволюции как процесса, про-текающего на популяционном уровне; подтверждение фунда-ментальной роли естественного отбора; выявление механизмов наследственной изменчивости и оценка ее вклада в эволюцион-ный процесс; установление эволюционных закономерностей -- онтогенеза (индивидуального развития организма).
Как резюмировал Вернадский, "Живой, динамический про-цесс бытия, науки, связывающий прошлое с настоящим, сти-хийно отражается в среде обитания человечества, является все растущей геологической силой, превращающей биосферу в но-осферу. Это природный процесс, независимый от историчес-ких случайностей"'2.
_________________________________________________________________
2Вернадский В.И. "Биосфера и ноосфера" -- М: 1988.

Законы эволюции требуют дальнейшего изучения, но суще-ствуют современные гипотезы, подкрепленные фактами палеонтологии, биогеографии, сравнительной эмбриологии и био-химии.
Рассматривая эволюцию на молекулярном уровне, можно сказать, что направленная эволюция обусловливает развитие по-пуляции молекул в определенном направлении, благодаря цик-лам селекции, амплификации и мутаций.
Молекулярный био-лог может читать гены какого-либо организма как историчес-кий документ, свидетельствующий о его эволюции, но написан-ный химическим языком (структура молекулы ДНК). В настоя-щее время исследуется и сам механизм, производящий эволю-ционные изменения. Разработанные математические модели эво-люции позволяют выявить общие закономерности эволюции раз-личных систем. Они опираются на теорию информации и само-организации.
Современные данные палеонтологии говорят о квантовом характере видообразования. В соответствии с геологическим временем этот процесс почти мгновенен. Анализ уравнений популяционной генетики показывает, что процесс видообразова-ния похож на фазовый переход.
Биология как наука о жизни
2. ГЕННАЯ ИНЖЕНЕРИЯ.
НАУЧНО - ИССЛЕДОВАТЕЛЬСКИЕ АСПЕКТЫ.

Генная инженерия -- экспериментальная наука. Возникла на стыке молекулярной биологии и генетики официально в 1972 г., когда в лаборатории П. Берга (Стенфордский университет, США) была получена первая рекомбинантная (гибридная) ДНК на базе объединения генетического материала, полный геном вируса обезьян 40, часть генома измерного бактериофага и гены галактозного оперона.
Генная инженерия нацелена на создание орга-низмов с новыми комбинациями наследственных свойств пу-тем конструирования функционально-активных генетических структур в форме рекомбинантных ДНК из фрагментов гено-мов разных организмов, которые вводились в клетку.
Как отмечалось, впервые рекомбинантную ДНК получи-ла группа П. Берга в 1972 г.
В 1973-74 гг. С. Коэном, Д. Хелинским, Г. Бойером и други-ми учеными впервые сконструированы функционально актив-ные молекулы гибридной ДНК, то есть удалось их клонирова-ние. Были созданы первые, не существующие в Природе, плазмиды (стабилизатор наследства) на базе ДНК из разных видов бактерий и высших организмов, из ДНК лягушки (кодирующей синтез рРНК), морского ежа (контролирующей синтез белков-гистон), и от мыши.
Вскоре аналогичная работа была выполнена в нашей стра-не группой специалистов под руководством С. И. Алиханяна и А. А. Баева.
Достижения генетики и химии нуклеиновых кислот позво-лили разработать методологию генной инженерии:
--открытие явления рестрикции -- модификации ДНК и выделение ферментов рестриктаз для получения специфи-ческих ферментов;
--создание методов химического и ферментативного синте-за генов;
--выявление векторных молекул ДНК, способных перенес-ти в клетку чужеродную ДНК и обеспечить там экспрессию со-ответствующих генов;
-- разработка методов трансформации у различных организ-мов и отбор клонов, несущих рекомбинантные ДНК.
Составляющие методик и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.