На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


Реферат Систематика. Строение прокариот. Размножение. Образ жизни. Основне группы прокариот: бактерии фототрофы, бактерии хемоавтотрофы, бактерии органотрофы, бактерии паразиты. Сине-зеленые водоросли.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 22.10.2003. Сдан: 2003. Уникальность по antiplagiat.ru: --.

Описание (план):


monax.ru/order/ - рефераты на заказ (более 2300 авторов в 450 городах СНГ).
3

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ФЕДЕРАЦИИ

УНИВЕРСИТЕТ РОССИЙСКОЙ АКАДЕМИИ ОБРАЗОВАНИЯ

Алексеева Ольга Петровна
студентка 1-го курса психологического факультета
группа 2-10
О Б Щ А Я Б И О Л О Г И Я :

ДОЯДЕРНЫЕ ОРГАНИЗМЫ

Реферат
Проверил:
канд. биол. наук
______________________________
(ФИО преподавателя)


2003 г.
П Л А Н
ВВЕДЕНИЕ
1. НАДЦАРСТВО ДОЯДЕРНОЕ ИЛИ
ЦАРСТВО ПРОКАРИОТ
2. СТРОЕНИЕ ПРОКАРИОТ
2.1. Клетка
2.2. Жгутики
2.3. Пили и фимбрии
2.4. Плазматическая мембрана, мезосомы и
фотосинтетические мембраны
2.5. Генетический материал
3. РАЗМНОЖЕНИЕ ПРОКАРИОТ
4. ОБРАЗ ЖИЗНИ ПРОКАРИОТ
5. ОСНОВНЫЕ ГРУППЫ ПРОКАРИОТ
5.1. Бактерии - фототрофы
5.2. Бактерии - хемоавтотрофы
5.3 Бактерии - органотрофы
5.4. Бактерии - паразиты
6. СИНЕ-ЗЕЛЕНЫЕ ВОДОРОСЛИ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
К доядерным организмам - прокариотам относятся простейшие одноклеточные организмы. В обиходе их называют бактериями или микробами.
Так же к прокариотам относятся синезеленые водоросли. В этой работе я постараюсь описать строение прокариот, их размножение, образ жизни, основные группы прокариот.
Эти микроорганизмы играют большую роль в нашей с вами жизни, поэтому мне интересна эта тема.
Прокариоты могут быть использованы в медицине. До второй половины прошлого века медицина практически не могла лечить болезни, вызываемые бактериями. Сейчас медики с большинством из них успешно справляются. Поэтому, я считаю, что эта тема актуальна и на сегодняшний день.
1. НАДЦАРСТВО ДОЯДЕРНОЕ ИЛИ
ЦАРСТВО ПРОКАРИОТ
Все известные одноклеточные и многоклеточные организмы вполне естественно делятся на две большие группы - прокариоты и эукариоты.
Все прокариоты принадлежат к одному царству Дробняки, представленному бактериями и сине-зелеными водорослями.
Клетки прокариот (от греч. pro - до, karion - ядро) не имеют оформленного ядра. Иными словами генетический материал (ДНК) прокариот находится прямо в цитоплазме и не окружен ядерной мембраной. Выделяют две группы бактерий: архебактерии ( от греч. архаиос - древнейший) и эубактерии.

2. СТРОЕНИЕ ПРОКАРИОТ
Прокариоты значительно крупнее вирусов (в среднем 0,5 - 5 мкм), самые мелкие из них могут быть мельче вируса оспы. Самые крупные бактерии можно увидеть невооруженным глазом в виде точек и палочек, но это исключения. Обычно прокариотные клетки рассмативаются под оптическим микроскопом. Впервые бактерии заметил в конце XVII века голландский натуралист А. ван Левенгук в простейший микроскоп - лупу из одной крошечной каплевидной линзы.
2.1. Клетка
Прокариотная клетка обычно покрыта оболочкой (клеточной стенкой), как клетка растений. Но состоит эта упругая, как автомобильная шина, оболочка не из целлюлозы, а из близкого к ней вещества муреина (от лат. «мура» - стенка). Некоторые бактерии (те же микоплазмы) потеряли оболочки вторично.
2.2. Жгутики
Многие бактерии имеют жгутики. Жгутики состоят из одинаковых сферических субъединиц белка флагеллина (похожего на мышечный актин), которые расположены по спирали и образуют полый цилиндр диаметром около 10 - 20 нм. Несмотря на волнистую форму жгутиков, они довольно жестки.
Жгутики приводятся в движение посредством уникального механизма. Основание жгутика вращается, по-видимому, так, что жгутик как бы ввинчивается в среду, не совершая беспорядочных биений и, таким образом, продвигает клетку вперед. Это, очевидно, единственная известная в природе структура, где используется принцип колеса.
Другая интересная особенность жгутиков - это способность отдельных субъединиц флагеллина спонтанно собираться в растворе в спиральные нити. Спонтанная самосборка - очень важное свойство многих сложных биологических структур. В данном случае самосборка обусловлена аминокислотной последовательностью (первичной структурой) флагеллина. Подвижные бактерии могут передвигаться в ответ на определенные раздражители, то есть они способны к таксису.
Жгутики легче всего рассмотреть электронный микроскоп, применив технику напыления металлом. Жгутиков может быть до нескольких десятков.
2.3. Пили и фимбрии
На клеточной стенке некоторых грамотрицательных бактерий видны тонкие выросты (палочковидные белковые выступы), которые называются пили или фимбрии. Они короче и тоньше жгутиков и служат для прикрепления клеток друг к другу или к какой-нибудь поверхности, придавая специфическую «липкость» тем штаммам, которые ими обладают. Пили, бывают разного типа. Наиболее интересны так называемые F-пили, которые кодируются специальной плазмидой и связаны с половым размножением бактерий.
2.4. Плазматическая мембрана, мезосомы и
фотосинтетические мембраны
Как у всех клеток, протоплазма бактерий окружена полунепроницаемой мембраной. У некоторых бактерий плазматическая мембрана втягивается внутрь клетки и образует мезосомы или фотосинтетические мембраны.
Мезосомы - складчатые мембранные структуры, на поверхности которых находятся ферменты, участвующие в процессе дыхания. Следовательно, мезосомы можно назвать примитивными органеллами. Во время клеточного деления мезосомы связываются с ДНК, что, по-видимому, облегчает разделение двух дочерних молекул ДНК после репликации и способствует образованию перегородки между дочерними клетками.
2.5. Генетический материал
ДНК бактерий представлены одиночными кольцевыми молекулами, длиной около 1 мм. Каждая такая молекула состоит из 5-100 пар нуклеотидов. Суммарное содержание ДНК (геном) в бактериальной клетке намного меньше, чем в эукариотической, а, следовательно, меньше и объем закодированной в ней информации. В среднем такая ДНК содержит несколько тысяч генов.
Формы клеток прокариот довольно просты: шарики (кокки), иногда объединенный по два ( двойные коки-диплококи); образующие цепочки (стрептококки) или склеенные в некое подобие виноградной грозди (стафилококки / от греч. стафилус - виноград), склеенные по четыре (сарцины); палочки (бациллы), искривленные палочки (вибрионы); штопорообразные (спириллы). Куда реже встречаются ветвящиеся формы клеток.
Простота формы делает невозможным точное определение прокариот по внешнему виду. Наоборот, физиология их настолько разнообразна, что в микробиологии в описании нового вида или разновидности обязательно указывают, в чем нуждается микроорганизм и какие продукты производит, то есть основные характеристики обмена с окружающей средой.
3. РАЗМНОЖЕНИЕ ПРОКАРИОТ
Размножаются прокариоты чаще всего простым делением клетки. Реже встречается почкование, когда отшнуровывающаяся молодая клетка много мельче материнской. Разделившиеся клетки часто остаются вместе, образуя нити, а иногда и более сложные структуры. В благоприятных условиях прокариоты растут очень быстро, по геометрической прогрессии. Захватив все ресурсы, популяция останавливает рост. Далее численность их может снижаться из-за отравления продуктами своего же обмена. В проточной среде скорость роста постоянна и зависит от температуры и количества пищи. Поэтому, в профильтрованной через почву ключевой воде бактерий нет - они не успевают размножаться до того, как их выносит за пределы источника.
В неблагоприятных условиях некоторые бактерии образуют споры - покоящиеся стадии, покрытые плотной оболочкой. В виде спор они выносят высокую температуру, порой даже выше 1000С и остаются жизнеспособными многие годы. Наоборот, растущие, делящиеся клетки большинства прокариот погибают уже при 800С. Есть, однако, и любители высокой температуры - термофилы, живущие в горячих источниках.
Микробиологи часто выращивают бактерии на поверхности твердой среды в мясном отваре с желатином или агаром. Клетка, попавшая на поверхность этого питательного студня, начинает делиться и образует колонию (пятно определенной формы и цвета), в которой все клетки - потомки одной, первоначальной. Это очень распространенный прием получения чистой линии микробов.
4. ОБРАЗ ЖИЗНИ ПРОКАРИОТ
Хотя микроорганизмы незаметны в природе, они распространены в огромных количествах везде, особенно в почве. Фактически весь облик Земли создан ими. Питаться они могут фактически всем, исключая созданные человеком пластмассы, стиральные порошки и яды. Все прочее может усваиваться всевозможными бактериями.
Микроорганизмы характеризуют по природе трех необходимых компонентов жизни: энергии, углерода и водорода.
Водород нужен не сам по себе, а как источник электронов:
Н2 > 2Н+ + 2е¬, поэтому он может быть заменен другими соединениями и элементами, легко отдающими электроны.
По источнику энергии различают две категории организмов: фототрофы (использующие солнечный свет) и химотрофы (использующие энергию химических связей в питательных веществах).
По источнику углерода выделяют автотрофы (СО2) и гетеротрофы (органическое вещество). Наконец, по источнику водорода (электронов) различают органотрофы (потребляющие органику) и литотрофы (потребляющие необязательно камни /по греч. «литос» - камень), а производственные литосферы - каменной оболочки Земли; это могут быть и сам Н2 и NH3, H2S, S, SO, Fe2+ и так далее.
По такой классификации земные растения - фотолитотрофы (светокамнееды), животные - хемоорганотрофы (органоеды). В мире прокариот встречаются самые удивительные сочетания.
У прокариот есть еще одно замечательное свойство, которого лишены высшие организмы. Хотя азот (N2) по гречески означает «безжизненный», он необходим для жизни, поэтому он входит в состав основных ее слагающих - белков и нуклеиновых кислот. Но усваивать атмосферный азот ни растения, ни животные не в состоянии, это могут делать только некоторые прокариоты, сначала восстанавливая его до аммиака (NH3), затем превращая в нитриты (NO2) и нитраты (NO3). До развития химической промышленности все мы жили за счет бактерий. Этот процесс идет в бескислородной среде, поэтому связывающие азот микроорганизмы выработали специальные устройства для защиты его от кислорода.
5. ОСНОВНЫЕ ГРУППЫ ПРОКАРИОТ
5.1. Бактерии - фототрофы
Многие бактерии используют свет, как источник энергии. Все они окрашены в красный, оранжевый, зеленый или сине-зеленый цвет; ведь для того, чтобы свет произвел какую-либо работу, он должен быть поглощен красителем - пигментом. У бактерий это разнообразные хлорофиллы и каротиноиды.
Пурпурные серные бактерии получают водород (электроны) из сероводорода (H2S), окисляя его до серы и сульфатов. Пурпурные несерные бактерии получают его из растворенных органических веществ.
Земные бактерии также могут усваивать H2S, молекулярный водород и органику. Большинство из них могут связывать молекулярный азот. Обитают они, чаще всего, в водоемах на поверхности ила, некоторые в горячих источниках.
Особенность бактериального фотосинтеза в том, что при нем выделяется свободный кислород (О2). Такой фотосинтез называют аноксигенным (бескислородным).
Совсем и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.