На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Изучение видов (гармонический, геометрический, арифметический, медиана), свойств, областей применения, способов расчета средней величины. Вычисление планового уровня развития явления на 2004 - 2005 годы трендовым методом, определение общего индекса цен.

Информация:

Тип работы: Контрольная. Предмет: Маркетинг. Добавлен: 03.05.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования "Уральский Государственный Экономический Университет"
Центр дистанционного образования
КОНТРОЛЬНАЯ РАБОТА
по дисциплине: "Статистика"
Исполнитель:
студент группы: ЭТр-09 СР
Трошева Наталья Юрьевна

г. Екатеринбург

2009г.

Содержание

Введение

1. Среднее величины: виды, свойства, область применения

1.1 Виды средних величин и способы расчета

1.2 Структурные средние величины

2. Практическое задание

Заключение

Список литературы

Введение

Данная контрольная работа состоит из двух частей - теоретической и практической.

В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.
Практическая часть посвящена расчету и анализу важнейших показателей работы любого предприятия - планового уровня развития явления и общего индекса цен с целью выделения основных факторов, влияющих на изменение этих показателей.
1. Среднее величины: виды, свойства, область применения
Средняя величина - это обобщающая величина изучаемого признака в исследуемой совокупности, которая отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.
Средние величины относятся к обобщающим статистическим показателям, которые дают сводную характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.
Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Отсюда средняя величина выступает как "обезличенная", которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.
Для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений.
Необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:
· качественная однородность совокупности, по которой вычислена средняя величина.
· исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов
· при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель, на который она должна быть ориентирована.
Средняя величина, рассчитанная в целом по совокупности, называется общей средней - отражает общие черты изучаемого явления; средние величины, рассчитанные для каждой группы групповыми средними - дают характеристику явления, складывающуюся в конкретных условиях данной группы.
1.1 Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины
Средние величины делятся на 2 больших вида:
степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина ().
структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют "структурными позиционными средними". Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.
Для наглядности наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в Таблице 1.
Таблица 1 Виды степенных средних
Вид степенной средней
Показатель степени
Формула расчета
Простая
Взвешенная
1. Гармоническая
-1
, где
2. Геометрическая
0
3. Арифметическая
1
Средняя арифметическая величина представляет собой такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Для того чтобы исчислить среднюю арифметическую, необходимо сумму всех значений признаков разделить на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Примером средней арифметической может служить общий фонд заработной платы.
Средняя арифметическая простая величина равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений. Она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака.
Средняя арифметическая взвешенная - это средняя их вариант, которые повторяются различное число раз или имеют различный вес.
Основные свойства средней арифметической:
1. Если индивидуальные значения признака, т.е. варианты, уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.
2. Если все варианты осредняемого признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число.
3. Если веса всех осредняемых вариантов уменьшить или увеличить в k раз, то средняя арифметическая не изменится.
4. Сумма отклонений отдельных значений признака (вариант) от средней арифметической равна нулю.
Прежде чем выполнять расчет средней величины необходимо преобразовать интервальный ряд в дискретный. Для этого находят середину интервала в каждой группе. Ее определяют делением суммы верхней и нижней границы пополам.
Формула средней гармонической взвешенной величины применяется когда информация не содержит частот по отдельным вариантам x совокупности, а представлена как произведение . Для того чтобы исчислить среднюю, необходимо обозначить , откуда . Теперь преобразуем формулу средней арифметической таким образом, чтобы по имеющимся данным x и m можно было исчислить среднюю. В формулу средней арифметической взвешенной вместо подставим m, а вместо f - отношение , и таким образом получим формулу средней гармонической взвешенной.
Средняя гармоническая простая величина применяется в тех случаях, когда вес каждого варианта равен единице, т.е. ,
Средняя геометрическая величина применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

1.2 Структурные средние величины

Бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном ряду значений признака вполне определенное положение. Примерами таких величин являются средние мода () и медиана ().

Мода - значение признака, которое имеет наибольшую частоту в статистическом ряду распределения.

Отыскание моды зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда. Поиск моды в дискретном ряду происходит путем простого просматривания столбца частот. В этом столбце находится наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. Может оказаться, что два признака имеют одинаков и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.