На бирже курсовых и дипломных проектов можно найти готовые бесплатные и платные работы или заказать написание уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов по самым низким ценам. Добавив заявку на написание требуемой для вас работы, вы узнаете реальную стоимость ее выполнения.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Быстрая помощь студентам

 

Результат поиска


Наименование:


Контрольная Количественное описание механизмов, участвующих в генерации потенциала действия. Натриевые и калиевые токи, соотношение натрия и калия на фазе роста потенциала клетки. Положительная и отрицательная обратная связь во время изменений проводимости.

Информация:

Тип работы: Контрольная. Предмет: Биология. Добавлен: 26.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


11
Ионные механизмы потенциала действия
План

1. Ионные механизмы потенциала действия
1.1 Измерение мембранных токов
1.2 Натриевые и калиевые токи
2. Роста потенциала
2.1 Какое количество ионов входит в клетку и выходит из нее во время потенциала действия?
2.2 Положительная и отрицательная обратная связь во время изменений проводимости
2.3 Измерения проводимости
Вывод
1. Ионные механизмы потенциала действия
1.1 Измерение мембранных токов
Количественное описание механизмов, участвующих в генерации потенциала действия, стало возможным благодаря методу измерения мембранных токов в условии фиксации потенциала. Этот метод позволяет определить, какой вклад вносят ионы того или иного типа в мембранный ток, а также вычислить величину и временной ход изменений соответствующих ионных проводимостей. Активация натриевой проводимости носит кратковременный характер, за ней следует инактивация. Увеличение калиевой проводимости продолжается до тех пор, пока не закончится деполяризация. Именно зависимость натриевой и калиевой проводимостей от мембранного потенциала и их попеременная активация качественно определяют как амплитуду, так и временной ход потенциала действия, равно как и другие мембранные характеристики, включая порог и рефрактерный период.
Исследование проводимостей одиночных калиевых и натриевых каналов во время потенциала действия проводились в условиях фиксации потенциала участка мембраны. Наблюдаемые при этом принципы работы отдельных каналов соответствуют результатам, полученным ранее в экспериментах с фиксацией потенциала целой клетки: при деполяризации вероятность открытия натриевых и калиевых каналов возрастает. Возрастание вероятности происходит с тем же временным ходом, что и соответствующие токи в условиях фиксации потенциала. Так, натриевые каналы наиболее часто открываются в начале деполяризующего импульса и вероятность таких открытий падает по мере развития натриевой инактивации.
В генерации потенциала действия могут принимать участие и другие катионные каналы. В некоторых клетках фаза роста потенциала действия определяется активацией кальциевых каналов, а реполяризация происходит благодаря активации различных типов калиевых каналов.

1.2 Натриевые и калиевые токи

Потенциал покоя зависит главным образом от разности концентраций калия (как было предложено Бернштейном в 1902 году), и, в меньшей степени, от концентраций натрия и хлора. Одновременно с созданием Бернштейном теории потенциала покоя, Овертон сделал важное открытие: он показал, что для генерации нервом потенциала действия необходим натрий, и сделал робкое предположение о том, что основой потенциала действия является вход ионов натрия в клетку. Развитие эта гипотеза получила благодаря опытам на аксоне кальмара.

В 1939 году Ходжкин и Хаксли показали, что на пике потенциала действия происходит кратковременная смена знака («овершут») потенциала на внутренней стороне мембраны в область положительных значений. Это наблюдение подтвердило участие натрия в потенциале действия, поскольку вход натрия в клетку происходит и при положительных значениях мембранного потенциала вплоть до натриевого равновесного потенциала ENa. Спустя десятилетие Ходжкин и Катц добились уменьшения явления овершута путем снижения внеклеточной концентрации натрия, а следовательно, и ЕNa. Они пришли к выводу, что потенциал действия есть результат значительного, хотя и кратковременного, увеличения натриевой проводимости мембраны. Сегодня известно, что это увеличение происходит за счет открытия огромного числа потенциалзависимых натриевых каналов.

Чем объясняется фаза спада потенциала действия? Можно предположить, что спад происходит просто в результате закрытия натриевых каналов. Это, действительно, один из факторов. Однако, если бы это был единственный механизм, то возврат мембранного потенциала к уровню потенциала покоя в большинстве клеток происходил бы гораздо медленнее, чем в действительности. Причина этого в том, что общая проводимость мембраны в покое достаточно мала, и выход накопленных в результате потенциала действия положительных ионов из клетки занял бы несколько миллисекунд, а то и десятки миллисекунд. В действительности, возврат к уровню потенциала покоя происходит гораздо быстрее благодаря значительному увеличению другой мембранной проводимости, а именно, за счет открытия калиевых каналов. С той же быстротой, с которой мембранный потенциал деполяризовался в направлении ENa, он гиперполяризуется на фазе спада потенциала действия в направлении ЕK. Увеличение калиевой проводимости может продолжаться до нескольких миллисекунд, что приводит во многих клетках не только к реполяризации, но и к гиперполяризации мембраны до значений более отрицательных, чем потенциал покоя.

2. Рост потенциала
2.1 Какое количество ионов входит в клетку и выходит из нее во время потенциала действия?
Если учесть, что на фазе роста потенциала действия в клетку входит большое количество натрия и большое количество калия ее покидает на фазе спада, то становится очевидным, что концентрации этих ионов в цитоплазме должны измениться. Величину этих изменений можно определить либо экспериментально, либо путем расчетов.
Вычисления соотношения между мембранным потенциалом и трансмембранных концентраций. При потенциале -67 мВ на внутренней поверхности мембраны находится приблизительно 4 · 1011 отрицательных зарядов на см2. На пике потенциала действия (+40 мВ) вместо этого отрицательного заряда внутри клетки накапливается около 2,4 · 1011 положительных зарядов, что происходит в результате входа в клетку 6,4 · 1011 ионов натрия на см2. и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.