Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Статья Разработка рецептурных форм для лекарственных средств. Применение природных полимеров. Изучение стойкости оболочек к действию протеолитических ферментов. Затруднения при диффузии субстрата к молекулам фермента.

Информация:

Тип работы: Статья. Предмет: Биология. Добавлен: 14.06.2007. Сдан: 2007. Уникальность по antiplagiat.ru: --.

Описание (план):


ИСПОЛЬЗОВАНИЕ ПОЛИЭЛЕКТРОЛИТНЫХ МИКРОКАПСУЛ С ЦЕЛЬЮ РАЗРАБОТКИ СИСТЕМ АДРЕСНОЙ ДОСТАВКИ БИОЛОГИЧЕКИ-АКТИВНЫХ ВЕЩЕСТВ НА ПРИМЕРЕ ИММОБИЛИЗАЦИИ ХИМОТРИПСИНА

Т.Н. Бородина, Е.А. Марквичева, Л.Д. Румш, С.М. Кунижев, Г.Б. Сухоруков

ВВЕДЕНИЕ

Разработка рецептурных форм для лекарственных средств, в которых качества активных ингредиентов сохраняются длительное время - важная задача, так как многие БАВ не рассчитаны на длительное пребывание в организме - они быстро выводятся или метаболизируют. Также их полезные свойства утрачиваются под воздействием кислорода, УФ - облучения и перепадов температуры. Кроме того, некоторые весьма важные компоненты могут нейтрализовать оздоровительное действие других компонентов, а в некоторых случаях образовывать с ними принципиально вредные для организма продукты. В связи с этим БАВ используются с недостаточной эффективностью, что приводит к снижению лечебного свойства конечного лекарственного средства.

Именно поэтому, все больше ученым приходится задумываться не только над поиском новых биорегуляторов, но и над созданием более совершенных форм уже известных биологически активных препаратов и задачей доставки этих препаратов в организм, регулирования скорости их действия и времени пребывания в организме. Природные полимеры, с этой точки зрения, представляют уникальную возможность для создания новых средств доставки БАВ. Широкое применение природных полимеров обусловлено их биосовместимостью, способностью к биодеградации, низкой токсичностью. В настоящее время к перспективным формам доставки различных биорегуляторов (ферментов, гормонов, витаминов, активаторов и ингибиторов различной природы) к тканям и органам относят липосомы, векторы, наночастицы, такие как полиэлектролитные микрокапсулы.
Включение белков в полимерные сферы и капсулы представляет большой научный и практический интерес [3]. Внимания заслуживают публикации по капсулированию белков в полиэлектролитные (ПЭ) частицы. Ступенчатое нанесение противоположно заряженных полиэлектролитов на матрицу, в качестве которой могут выступать твердые частицы различного размера, позволяет проводить иммобилизацию в мягких условиях и в водных растворах [4].
На основе полиэлектролитных комплексов (ПК) могут быть созданы эффективные системы с иммобилизованным ферментом, обладающим свойством саморегулирования [5]. Ранее было предложено [6] использовать ПК в качестве депо антигепариновых веществ. Антигепариновые вещества, представляющие собой растворимые катионные полиэлектролиты, являются чрезвычайно токсичными. Их токсичность не проявляется на фоне гепарина благодаря образованию ПК гепарин-поликатион. Поэтому передозировка антигепариновых препаратов представляет значительную опасность. Использование этих веществ в составе ПК позволяет избежать данного побочного эффекта.
В качестве матриц для ПК используются коллоидные частицы с диаметром от десятков нанометров [7] до десятков микрон [8;9]. Круг использованных коллоидных частиц разнообразен. Среди них латексные полистирольные и меламинформальдегидные частицы [10;11], неорганические карбонатные матрицы [12], кристаллы органических красителей [13;14], микрочастицы из полигидроксикарбоновых кислот [8], интактные клетки [15], белковые агрегаты [16], микроагрегаты ДНК [17]. В данной работе были использованы CaCO3 ядра, которые, на наш взгляд, являются оптимальными при работе с БАВ, т.к. растворяющим агентом для них служит ЭДТА и процесс растворения происходит в мягких условиях при физиологических значениях рН.
Для формирования полиэлектролитной оболочки на коллоидных частицах методом ПЭ адсорбции используются как синтетические, так и природные полиэлектролиты. В качестве последних применялись хитозан и хитозансульфат [18;19], протамин и декстран сульфат [20] и другие. В данной работе были использованы альгинат натрия и поли - L- лизин, которые являются биосовместимыми и биодеградируемыми полимерами. Основным фактором, определяющим эффективность микрокапсул, является проницаемость их оболочек для пищеварительных соков и других биологических жидкостей, а также для содержащихся в них лекарственных веществ. С этой целью было исследовано влияние протеолитического фермента - трипсина на полученные микрочастицы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали б-химотрипсин, «Fluka, Biochemika» (Германия); поли-L-лизин (PLL)(150-300 кДа), «Fluka», США; альгинат натрия средней вязкости (Alg), «Sigma» (Германия); трипсин (ТР) "Sigma" (Германия); N- Бензоил-L-тирозин (ВТЕЕ), "Sigma" (Германия); этилендиаминтетрауксусная кислота (ЭДТА), «Sigma» (Германия), ТРИС-буфер, "Sigma" (Германия); хлорид натрия, соляная кислота, гидроксид натрия.

1. Получение микрочастиц карбоната кальция

Эквивалентный объем (15 мл) 0,33 N водного раствора Na2CO3 быстро приливали при перемешивании (400-900 об/мин) к 0,33 N водному раствору CaCl2.. После перемешивания в течение 60 сек, суспензию образовавшихся частиц оставляли на 5-7 минут до полной кристаллизации карбоната кальция. Далее осадок CaCO3 промывали 50 мл воды и фильтровали. Отмывку повторяли 3 раза. Последний раз микрочастицы промывали спиртом или ацетоном, после чего фильтр помещали под нагревательную лампу и сушили 1,5 час при 50-60 оС. Сухие микрочастицы CaCO3 хранили в закупоренной емкости при комнатной температуре.

2. Включение ХТР в CaCO3 микрочастицы методом адсорбции в порах

50-100 мг CaCO3 микрочастиц диаметром 3-5 микрон суспендировали в 1 мл раствора фермента (5-10 мг/мл) в воде. После инкубации на шейкере или качалке в течение 2 часов, микрочастицы осаждали центрифугированием (1000 об/мин, 5 мин) и отделяли супернатант. Далее частицы оставляли на 10 часов в холодильнике, центрифугировали (1000 об/мин, 5 мин), отбирали супернатант. После этого, частицы дважды промывали водой (1мл), используя центрифугирование (1000 об/мин, 5 мин)/ресупендирование.

3. Получение полиэлектролитных микрокапсул

Капсулы получали на CaCO3 частицах с диаметром 3-5 мкм последовательной адсорбцией Alg (2 мг/мл) и PLL (2 мг/мл) в 0,02 N NaCl. Нанесение каждого слоя полиэлектролитов проводили в течение 15 минут, затем частицы центрифугировали и дважды промывали в 0,02 N NaCl. При агрегации частиц между собой в процессе адсорбции ПЭ, суспензию микрочастиц подвергали обработке ультразвуком (максимальная мощность) в течение 1-3 сек. После нанесения 3-ех слоев Alg и 3-ех слоев PLL, CaCO3- частицы растворяли 0,2М раствором ЭДТА, рН 7,0. После полного растворение карбонатной матрицы, микросферы промывали в воде 3 раза (время инкубации 3-5 минут) и хранили в виде суспензии при 4 оС.

4. Определение содержания белка в микрочастицах и растворах

Определения концентрации белка в растворах проводили спектрофотометрически. Для этого в кювету на 1,5 мл вводили 1 мл раствора белка и измеряли оптическую плотность при 280 нм. Исследуемые растворы были разбавлены, с учетом коэффициента экстинкции для каждого белка, таким образом, чтобы значение оптической плотности не превышало 2. Калибровочную кривую строили с использованием того же белка, который использовали для получения микрочастиц. Эффективность включения (иммобилизации) белка определяли как отношение оптической плотности в исходном растворе (Dисх) к значению в супернатанте после сорбции(Dсорб).

5. Измерение протеолитической активности ХТР

Для изучения протеолитической активности иммобилизованного ХТР в водной среде (0,08 М ТРИС-буфер, рН 7,8, содержащий 0,1М CaCl2), использовали следующую методику. 40 мкл раствора ХТР или суспензии микросфер с ХТР добавляли в кювету на 1,5 мл, содержащую 0,15 мл 0,08 М ТРИС-буфера, рН 7,8 и 0,14 мл 0,00107 М BTEE в 50% растворе метанола (63 мл абсолютного метанола в 50 мл воды). Прирост оптической плотности регистрировали спектрофотометрически при длине волны 256 нм в течение 5 минут. При этом каждую минуту кювету встряхивали, чтобы избежать осаждения микросфер с включенным белком. Таким образом, прирост оптической плотности был обусловлен накоплением продукта ферментативного гидролиза.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Получение микрокапсул с ХТР на основе CaCO3-частиц
Полиэлектролитные микрокапсулы были получены ступенчатой адсорбцией [5] противоположно заряженных Alg и PLL на твердых CaCO3-частицах. Впервые микрочастицы из карбоната кальция были получены и применены в качестве деградируемой матрицы для получения ПЭ микрочастиц в работе [10]. Непосредственное взаимодействие эквимолярных растворов карбоната натрия и хлорида кальция при перемешивании приводит к кристаллизации малорастворимой соли CaCO3. Образующиеся в результате микрочастицы имеют сферическую форму и размер несколько микрон (микрометров?). Микрофотографии таких частиц, полученные с помощью сканирующего электронного микроскопа, представлены на рисунке 1. На фотографии можно видеть внутреннюю канало-подобную структуру частиц. Формирование такого рода архитектуры вызвано специфическим процессом роста частиц [21].
Для получения микросфер (Alg/PLL)3, в качестве агента для растворения CaCO3 матрицы, была использована ЭДТА (рН 7,0). Использование CaCO3 частиц позволяет проводить процесс микрокапсулирования в физиологически оптимальных значениях рН, что особенно важно для иммобилизации БАВ, в частности - белков. Первым ПЭ наносился Alg в силу отрицательного заряда CaCO3 микрочастиц (о-потенциал поверхности составил -12,2±2,5 мВ). В процессе последовательной адсорбции макромолекулы ПЭ проникают в поры CaCO3 микрочастиц, так как размер пор (30-90 нм) в несколько раз больше размера макромолекул ПЭ. Таким образом, во внутренних каналах микрочастиц происходит формирование интерполиэлектролитного комплекса. После растворения CaCO3 матрицы ПЭ комплекс остается стабильным [21].
Размер микросфер в растворе соответствовал размеру исходной матрицы - CaCO3 микрочастиц. Данный факт подтверждается наблюдениями за микрочастицами в процессе удаления карбонатной матрицы (оптическая микроскопия). На рисунке 2 представлены фотографии CaCO3 микроч и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.