На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Развитие естественных наук в средние века, место и роль церкви в государстве. Построение теории строения атома на основе планетарной модели. Развитие астрономии, характеристики галактик. Теории возникновения жизни на Земле. Гипотезы происхождения рас.

Информация:

Тип работы: Контрольная. Предмет: Биология. Добавлен: 14.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


1. История развития естественных наук в Средневековья
В Средние века в Западной Европе прочно установилась власть церкви в государстве. Этот период обычно называется периодом господства церкви над наукой. Такое понимание, на наш взгляд, не является полностью адекватным [5, с. 21].
Христианство, направленное на духовное исцеление человека, на наш взгляд, не отрицало исцеления телесного, медицинского. Как институт духовной, светской власти церковь Средневековья Западной и Восточной Европы стремилась донести до широких слоев масс и народов духовное содержание Библии. Для достижения данной цели необходимо было научить людей читать Библию.
Средневековье способствовало развитию образования и медицины, безусловно, лишь в определенном смысле [5, с. 21]. В рамках развития медицины, безусловным авторитетом считался арабский ученный и философ Авиценна. Он родился в 980 году н.э., умер в возрасте 58 лет. Его «Медицинский канон» состоит из 5 книг, в которых содержатся медицинские сведения о человеке. В рамках данного произведения развивались медицинские идеи учения знаменитого врача Галена, который совершенствовал свои знания в Александрии, признание же получил в Риме. Гален считал, что весь организм человека оживлен некоей силой, которую он называл пневмой. Необходимо сразу отметить, что многие медицинские представления Галена были несостоятельными: дыхание, кровообращение, пищеварение, например, он не мог понять. В физике, астрономии, космологии, философии, логике и других науках Средневековье признало авторитет Аристотеля. Для этого были основания, поскольку его учение опиралось на понятие цели как одной из причин развития и изменения в реальном мире.
Знаменитым врачом Средневековья был Арнольд де Вилланова. Его работа «Требник с головы до ног» - это крупное достижение в области средневековой медицины. Он высказывал идеи о том, что медицина как наука должна заниматься конкретными описаниями и наблюдениями. В Средние века медициной занимались монахи. В 1215 году Лютеранский собор запретил духовенству заниматься тем, что сегодня называется хирургией, и она отошла к цирюльникам. В России развитие аптекарского, лечебного дела, хирургии связано с реформами Петра I. В 1706 г. Был издан указ о строительстве первого госпиталя. До этого были костоправные школы, открытые царем Алексеем Михайловичем в 1654 году. До середины XIX века умирало почти 80% оперированных [5, с. 22].
В период Средневековья был остро поставлен вопрос об отношении истин и разума. Решение этого вопроса было предложено католическим философом Фомой Аквинским (1225-1274), признанным с 1879 года католической церковью официальным католическим философом. Фома Аквинский считал, что наука и философия выводят свои истины, опираясь на опыт и разум, в то время как религия черпает их в Священном Писании. Идеи Фомы Аквинского о том, что истины опыта и разума служат обоснованием веры человека в Бога, является ведущей в отношении современной христианской религии к истинам науки и сегодня.
Эта позиция заключается в уверенности католической церкви в том, что хотят ученые или нет, наука по мере своего развития все равно придет к Богу, которого обрела вера. Иначе говоря, наукой можно заниматься.
Однако католическая церковь не была последовательной в признании данного принципа. К примеру, Дж. Бруно был схвачен инквизицией, обвинен в ереси и сожжен на костре. Католическая церковь обязала Г. Галилея рассматривать систему Н. Коперника только как гипотезу, удобную для видимого движения планет Солнечной системы. Правда, существует информация о том, что большую неприятность Галилею доставляли не отцы церкви, а религиозные философы того времени [2, с. 37].
В качестве примера можно рассмотреть и ситуацию. В 1553 г. Церковь обвинила и сожгла на костре Мигеля Сервета (1511-1553), который совершенно правильно описал малый круг кровообращения. Его обвинил в ереси сам Кальвин, один из реформаторов церкви.
В период Средневековья ряд людей занимались наукой на свой страх и риск. Классическим примером судьбы ученого этого периода является английский философ Роджер Бэкон. Он провел четырнадцать лет в монастырской тюрьме. Именно ему принадлежит классическое выражение: «Знание - сила». Он предсказал, что прозрачным телам можно придать такую форму, что большое покажется малым, высокое - низким, скрытое станет видимым. В своей работе «Перспектива» он описал преломление лучей со сферической поверхностью.
С этой работой, по-видимому, был знаком Г. Галилей (1564-1642), физик и изобретатель телескопа. Роджер Бэкон отстаивал важные для развития науки принципы:
а) обратиться от авторитетов, религиозных источников и книг к исследованию природы;
б) опираться в изучении природы на дыне наблюдений и эксперимента;
в) широко использовать математику в исследовании природы.
Таким образом, в заключение можно назвать ряд причин, которые не позволили погаснуть факелу науки, зажженному мыслителями Древней Греции:
1. Создание в XIII - XIY вв. системы университетского образования в западных странах Европы. В этот период в Парижском университете (основан в 1215 г.) училось более 20 тыс. студентов.
2. Признание церковью светской учености.
3. Развитие латинского языка общения по вопросам религии и науки.
4. Организация издательской деятельности, которая привела к изобретению в 1440 г. немецким ювелиром И. Гуттенбергом книгопечатания. Он напечатал Библию - первое полное печатное издание в Европе.
2. Строение атома. Планетарная модель атома

Атом состоит из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных частиц - электронов, составляющих его электронную оболочку.
Сумма зарядов электронов равна по модулю положительному заряду ядра, поэтому атом в целом представляет собой электронейтральную систему. Размеры атома определяются размерами его электронной оболочки и составляют величину порядка 10-8 см [3, с. 189].
Электроны в оболочке атома расположены слоями. Число электронных слоев равно порядковому номеру химического элемента в периодической системе элементов Д.И. Менделеева.
В первом, ближайшем к ядру слое К вращается не более двух электронов. В следующем за ним слое L - не более 8, в слое М - не более 18, а в четвертом слое N - не более 32 электронов. Таким образом, наибольшее число электронов этих слоев равно удвоенному квадрату номера слоя Z = 2n2. В последующих слоях это правило нарушается, и количество электронов может составлять: в пятом слое О - от 1 до 29, в шестом слое Р - от 1 до 9 и в дополнительном (последнем) слое Q - не более 2 электронов.
Каждый атом существует лишь в определенных дискретных энергетических состояниях, соответствующих строго определенному значению его энергии.
Переход атома из одного энергетического состояния в другое сопровождается поглощением или излучением энергии. В обычном же состоянии атом не излучает.
Если одному из электронов при столкновении с какой-либо частицей извне будет сообщена некоторая дополнительная энергия, то он перейдет на более удаленную орбиту того слоя, которому соответствует его новая энергия. В этом случае атом приходит в возбужденное состояние, и тогда один из электронов внешнего слоя перескакивает на освободившееся место. Через короткое время (порядка 10-8 с) атом возвращается в нормальное состояние, испуская при этом видимый свет, ультрафиолетовое или рентгеновское излучение.
Если электрон атома получит большую энергию, то он будет совсем выбит (удален) из атома. Подобный процесс называется ионизацией.
Ядро атома состоит из положительно заряженных частиц (протонов) и нейтральных частиц, лишенных заряда (нейтронов). Обе эти частицы обычно называют нуклонами.
Протон - материальная частица, которая имеет массу mр = 1,6726. 10-24 г. = 1,007275 а.е.м. Положительный заряд равен 1е+. Поскольку масса нейтрона (mn = 1,008665 а.е.м.) всего на 0,14% больше массы протона, в расчетах эта разница обычно во внимание не принимается и масса нейтрона практически считается равной массе протона.
Размеры ядра очень малы: 10-12-10-13 см (ядро в 100 000 раз меньше атома). Несмотря на малые размеры ядра в нем сосредоточено 99,95% массы атома. Ввиду этого плотность ядерного вещества очень велика и составляет величину порядка 1017 кг/м3.
Заряд ядра, выраженный в элементарных единицах, численно равен порядковому номеру элемента в периодической системе Д.И. Менделеева. Это дает возможность по порядковому номеру элемента Z определить число протонов в ядре данного атома.
Общее число нуклонов в ядре атома можно определить по так называемому массовому числу А. Массовое число - это округленный до целых единиц атомный вес элемента. Поскольку число протонов в ядре численно равно порядковому номеру элемента Z, то число нейтронов равно разности массового числа А и порядкового номера Z, т.е. N = А - Z. Например, гелий имеет Z = 2 и А = 4, значит, в ядре атома гелия два протона и два нейтрона.
Таким образом, место элемента в периодической системе элементов Д.И. Менделеева и его атомный вес вскрывают не только строение атома, но и структуру его ядра.
Вид атомов с данными числами протонов и нейтронов называют нуклидом.
Значение атомного веса в таблице элементов почти всегда выражается дробным числом. Это объясняется тем, что почти каждый элемент в действительности состоит из нескольких разновидностей этого элемента, имеющих одинаковый электрический заряд, но различную массу, т.е. одинаковое количество протонов в ядре, но различное количество нейтронов. Разновидности химического элемента, имеющие в ядре атома одинаковое количество протонов, но различное количество нейтронов, называются изотопами.
Все изотопы данного элемента размещаются в одной клетке таблицы элементов периодической системы. Дробное значение атомного веса элемента и отражает в этом случае среднее значение атомного веса всех изотопов данного элемента. В настоящее время известно более 1500 изотопов, из них не более 300 стабильных (ядра которых в течение длительного промежутка времени не претерпевают изменений), остальные являются радиоактивными (ядра которых со временем распадаются).
Планетарную модель строения атома первым предложил Ж. Перрен, пытаясь объяснить наблюдаемые свойства орбитальным движением электронов. Но В. Вин посчитал ее несостоятельной. Во-первых, электрон при вращении согласно классической электродинамике должен непрерывно излучать энергию и, в конце концов, упасть на ядро. Во-вторых, из-за непрерывной потери энергии излучение атома должно иметь непрерывный спектр, а наблюдается линейчатый спектр.
Опыты по прохождению а - частиц через тонкие пластинки из золота и других металлов провели сотрудники Э. Резерфорда Э. Марсден и Х. Гейгер (1908).
Они обнаружили, что почти все частицы проходят через пластинку свободно, и только 1/10 000 из них испытывает сильное отклонение - до 150°. Модель Томсона это не могла объяснить, но Резерфорд, его бывший ассистент, сделал оценки доли отклонений и пришел к планетарной модели: положительный заряд сосредоточен в объеме порядка 10-15 со значительной массой [5, с. 194].
Считая орбиты электронов в атоме закрепленными, Томсон в 1913 г. тоже пришел к планетарной модели строения атома.
Но, решая задачу на устойчивость такого атома с использованием закона Кулона, он нашел устойчивую орбиту лишь для одного электрона. Ни Томсон, ни Резерфорд не могли объяснить испускание а - частиц при радиоактивном распаде - выходило, что в центре атома должны быть и электроны?!
Об этом говорила и М. Склодовская-Кюри. Резерфорд принял это, но ему пришлось приписать электронам функцию склеивания ядер, чтобы кулоновское отталкивание не развалило ядро. Эти модели не позволяли получить количественные результаты, соответствующие опытам. В 1913 г. придали вес модели Резерфорда некоторые опытные данные по радиоактивным явлениям. Его ассистент Г. Мозли измерил частоту спектральных линий ряда атомов Периодической системы и установил, что «атому присуща некая характерная величина, которая регулярно увеличивается при переходе от атома к атому. Это количество не может быть ни чем иным, как только зарядом внутреннего ядра» [Цит. по: 5, с. 194].
Построение теории строения атома на основе планетарной модели наталкивалось на обилие противоречий.
Сначала датский физик Н. Бор пытался применить классическую механику и электродинамику к задаче о торможении заряженных частиц при движении через вещество, но при заданном значении энергии электрона появлялась возможность приписывать ему произвольные параметры орбиты (или частоты), что приводило к парадоксам.
Планетарная модель строения атома Резерфорда оказывалась несовместимой с электродинамикой Максвелла.
В феврале 1913 г. появились статьи по интерпретации спектров звезд Дж. Никольсона. Он, распространяя идею Планка на атомы, предложил квантовать проекции момента электрона. Так появился атом с дискретными орбитами, по которым вращались группы электронов, излучающие электромагнитные волны с частотой, равной частоте обращения. Такая модель годилась для сильно возбужденных атомов, и Никольсон объяснил некоторые особенности в спектрах звезд и туманностей исходя из модели атома - представления об электронном кольце, вращающемся вокруг положительно заряженного ядра.
Атом характеризовался, в первую очередь, своим спектром излучения. Он связал со спектральными частотами частоты специально постулированных механических колебаний электронов, перпендикулярных плоскости кольца.
3. Галактики. Основные характеристики галактик
Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, - так и названные туманностями, - видимые неизменно в одних и тех же местах. С помощью сильных телескопов У. Гершель и его сын Дж. Гершель открыли множество таких туманных пятен, а к концу XIX в. было обнаружено, что некоторые из них имеют спиральную форму. Но долго оставалось загадкой, что представляют собой эти туманности.
Только в 1920-е гг. с помощью крупнейших в то время телескопов удалось разложить туманности на звезды. Стало ясно, что туманности - это не облака пыли, светящиеся отраженным светом, и не облака разреженного газа, а чрезвычайно далекие звездные системы галактики.
Галактики - это гигантские звездные системы (примерно до 1013 звезд) [6, с. 413]. Такого же порядка (n = 13) и массы галактик по отношению к массе Солнца.
Некоторые галактики можно разглядеть в хороший бинокль.
Галактику Андромеды, большую по размерам и находящуюся достаточно близко к Солнцу (всего в 1,5 млн. световых лет), в состоянии увидеть человек с хорошим зрением: это размытое пятно в созвездии Андромеды. Современные телескопы позволяют отыскать сотни миллионов и миллиарды галактик. В хорошо исследованной области пространства, на расстояниях 1500 Мпк, находится сейчас несколько миллиардов галактик [6, с. 414].
Таким образом, наблюдаемая нами область Вселенной - это, прежде всего, мир галактик.
Строение их различно.
Но наиболее характерна и примечательна одна форма - уплощенный диск с выпуклостью в центре, откуда исходят спиральные рукава.
Галактика Андромеды, как и наша собственная, принадлежит к спиральному типу галактик. Солнечная система расположена в одном из спиральных рукавов Галактики на расстоянии примерно двух третей ее радиуса от центра.
Следует помнить, что, наблюдая вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Свет от них приходит к нам через пространство в миллиарды и миллиарды километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн. лет. С помощью больших телескопов можно наблюдать еще намного более далекие галактики, и мы видим их такими, какими они были миллиарды лет назад. Расстояние до самых дальних из наблюдаемых в настоящее время галактик - свыше 10 млрд. световых лет [6, с. 415].
Изучение мира галактик является сейчас наиболее бурно развивающейся областью астрономии. Именно в этой области происходят поразительные открытия, которые подводят нас к разгадке глубинных тайн Вселенной, загадок, наиболее потрясающих воображение.
Изучение галактик требует максимально мощных инструментов, в частности, больших оптических телескопов, а также внеоптических средств и методов исследования слабых объектов, прежде всего радиоастрономических.
Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик.
В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далеких галактик: их спектральные линии оказались смещенными к длинноволновому (красному) краю по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя.
А в 1929 г. американский астроном Э. Xаббл, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла).
Этот закон дал астрономам эффективный метод определения расстояний до галактик по следующей формуле:
r = cz / H (Мпк), (1)
где r - расстояние до галактики; с - скорость света; z = (?пр-?ис)/?ис; Н - постоянная Хаббла.
По современной оценке, постоянная Хаббла (отношение скорости удаления (V) внегалактических источников к расстоянию (R) до них Н = V/R) составляет от 50 до 100 км/(сМпк).
В настоящее время измерены красные смещения тысяч галактик и квазаров.
Чрезвычайно многообразны формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени. Хаббл выделял три основных типа галактик: эллиптические, имеющие круглую или эллиптическую форму (обозначаются Е); это наиболее простые галактики, не содержащие горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их нет ядра; спиральные, ко и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.