На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Общая характеристика тела планеты. Планета Земля как сложная динамическая система. Экологическая реальность планеты. Глобальные катастрофы, природные катастрофы, катастрофы антропогенного происхождения, их роль в формировании экологии планеты Земля.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 26.09.2014. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


25
МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ РОССИЙСКОЙ ФЕДЕРАЦИИ
БЕЛГОРОДСКИЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ
Кафедра гуманитарных и социально-экономических дисциплин
Дисциплина: " Концепции современного естествознания "
РЕФЕРАТ
" Концепция системы планеты Земля
как концепция целокупности естественных гео- и экосистем "



Подготовил:
профессор кафедры ГиСЭД,
к.ф.н., доц.
Номерков А.Л.
Проверил:
Студент 534 группы
Малявкин Г.Н.
Белгород - 2008
План Реферата
Страницы
1. Общая характеристика "тела" планеты Земля
5
2. Планета Земля как сложная динамическая система
13
3. Экологическая реальность планеты Земля:
28
а. Глобальные катастрофы и их роль в эволюции планеты Земля
28
б. Природные катастрофы: их роль в формировании экологического "облика" планеты Земля
30
в. Катастрофы антропогенного происхождения и их экологические последствия
38
Введение

Земля - одна из планет Солнечной системы.
Это не самая большая, но и не самая малая из планет. Она не ближе других к солнцу, но и не обитает на периферии планетной системы. И все же Земля обладает одной уникальной особенностью - на ней есть жизнь
Появление жизни, живого вещества - биосферы - на нашей планете явилось следствием её эволюции. В свою очередь биосфера оказала значительное влияние на весь дальнейший ход природных процессов. Так, не будь жизни на Земле, химический состав её атмосферы был бы совершенно иным. Несомненно, всестороннее изучение Земли имеет громадное значение для человечества, но знания о ней служат также своеобразной отправной точкой при изучении остальных планет земной группы.
Непросто "заглянуть" в недра Земли Даже самые глубокие скважины на суше едва преодолевают 10-километровый рубеж, а под водой удаётся, пройдя осадочный "чехол", проникнуть в базальтовый фундамент не более чем на 1,5 км. Однако нашёлся другой способ. Как в медицине рентгеновские лучи позволяют увидеть внутренние органы человека, так при исследовании недр планеты на помощь приходят сейсмические волны. Скорость сейсмических волн зависит от плотности и упругих свойств горных пород, через которые они проходят. Более того, они отражаются от границ между пластами пород разного типа и преломляются на этих границах.
По записям колебаний земной поверхности при землетрясениях -при помощи сейсмограмм было установлено, что недра Земли состоят из трёх основных частей: коры, оболочки (мантии) и ядра. Кора отделяется от оболочки отчётливой границей, на которой скачкообразно возрастают скорости сейсмических волн, что вызвано резким повышением плотности вещества. Эта граница носит название раздел Мохоровичича (иначе - поверхность Мохо или раздел М) по фамилии сербского сейсмолога, открывшего эту сферу в 1909 г.
Толщина коры непостоянна, она изменяется от нескольких километров в океанических областях до нескольких десятков километров в горных районах материков. В самых грубых моделях Земли кору представляют в виде однородного слоя толщиной порядка 35 километров. Ниже, до глубины примерно 2900 км, расположена мантия. Она, как и земная кора, имеет сложное строение.
1. Общая характеристика "тела" планеты Земля

Ещё в XIX столетии стало ясно, что у Земли должно быть плотное ядро. Действительно, плотность наружных пород земной коры составляет около 2800 кг/м3 для гранитов и примерно 3000 кг/м3 для базальтов, а средняя плотность нашей планеты - 5500 кг/м3. В то же время существуют железные метеориты со средней плотностью 7850 кг/м3 и возможна еще более значительная концентрация железа. Это послужило основанием для гипотезы о железном ядре Земли. А в начале XX в. были получены первые сейсмологические свидетельства его существования. Граница между ядром и мантией наиболее отчётливая. Она сильно отражает продольные (Р) и поперечные (S) сейсмические волны и преломляет Р-волны. Ниже этой границы скорость Р-волны резко надает, а плотность вещества возрастает: от 5600 кг/м3 до 10000 кг/м3. S-волны ядро вообще не пропускает. Это означает, что вещество там находится в жидком состоянии.
Есть и другие свидетельства в пользу гипотезы о жидком железном ядре планеты. Так, открытое в 1905 г. изменение магнитного поля Земли в пространстве и по интенсивности привело к заключению, что оно зарождается в глубинах планеты. Там сравнительно быстрые движения могут происходить, не вызывая катастрофических последствий. Наиболее вероятный источник такого поля - жидкое железо (т.е. проводящее токи) ядро, где возникают движения, действующие по механизму самовозбуждающегося динамо. В нём должны существовать токовые петли, грубо напоминающие витки провода в электромагните, которые и генерируют различные составляющие геомагнитного поля. В 30-е гг. сейсмологи установили, что у Земли есть и внутреннее твёрдое ядро. Современное значение глубины границы между внутренним и внешним ядрами примерно 5150 км.
Граница наружной зоны Земли расположена на глубине порядка 70 км. Литосфера включает в себя как земную кору, так и часть верхней мантии. Этот жёсткий слой объединяется в единое целое его механическими свойствами. Литосфера расколота примерно на десять больших плит, на границах которых случается подавляющее число землетрясений.
Под литосферой на глубинах от 70 до 250 км существует слой повышенной текучести - так называемая астеносфера Земли. Жёсткие литосферные плиты плавают в "астеносферном океане". В астеносфере температура мантийного вещества приближается к температуре его плавления. Чем глубже, тем выше давление и температура. В ядре Земли давление превышает 3600 кбар, а температура - 6000 єC.
О высокой температуре земных недр учёные догадывались давно. Об этом свидетельствовали и вулканические извержения, и рост температуры при погружении в глубокие шахты. В среднем у поверхности Земли её увеличение составляет 20 градусов на километр. Тепловая энергия земных недр выделяется с поверхности планеты в виде теплового потока, который измеряется количеством тепла, выделяемого с единицы площади за единицу времени. Измерить тепловой поток Земли с достаточной точностью удалось только во второй половине XX века.
Континентальную земную кору можно представить в виде 15-километрового слоя гранита, лежащего на слое базальта такой же толщины. Концентрация радиоактивных изотопов, служащих источниками тепла, в гранитах и базальтах хорошо изучена. Это прежде всего радиоактивный калий, уран и торий. Подсчитано, что при их распаде выделяется примерно 130 Дж/(см2·год) В тоже время средний тепловой поток, который равен 130-170 Дж/(см2·год). Следовательно, он почти полностью определяется тепловыделением в гранитном и базальтовом слоях.
С океанической корой все обстоит иначе Она значительно тоньше континентальной, и основу её составляет 5-6-километровый базальтовый слой. Распад содержащихся в нём радиоактивных элементов даёт всего около 10 Дж/(см2·год). Однако, когда специалисты измерили тепловой поток на океанах, он оказался примерно таким же, как и на материках. Сегодня установлено, что основная часть тепла поступает в океаническую кору через литосферную плиту из мантии. Вещество мантии постоянно находится в движении. Неравенство температур различных слоев в ней приводит к активному перемешиванию вещества; более холодное и, соответственно, более плотное тонет, более горячее всплывает. Это так называемая тепловая конвекция.
Большинство современных исследователей указывают на три возможных источника энергии для поддержания тепловой конвекции в мантии. Во-первых, мантия всё ещё сохраняет большое количество тепла, накопленного в период формирования планеты. Его достаточно, чтобы поверхностный тепловой поток сохранялся на его теперешнем уровне в течение срока, в несколько раз превышающего нынешний возраст Земли. При этом планета должна остывать, но её остывание происходит очень медленно. Во-вторых, определённое количество тепла, по-видимому, поставляется в мантию из ядра. И, наконец, третий источник - это распад радиоактивных элементов (их содержание в мантии в настоящее время трудно оценить).
Ещё в 1912 г. немецкий исследователь Альфред Вегенер выдвинул гипотезу дрейфа континентов. На эту идею его натолкнули поразительное соответствие очертаний береговых линий материков Африки и Южной Америки, а также явные следы глобального изменения климата в прошлом во многих регионах мира. Но гипотеза поначалу была отвергнута научным сообществом, так как не указывала причин дрейфа. В 30-е гг. английский геолог Артур Холмс предложил объяснить движение континентов тепловой конвекцией. В 50-гг., когда широко проводились исследования дна океана, гипотеза о крупны горизонтальных перемещениях в литосфере получила новые подтверждение. Значительную роль в этом сыграло изучение магнитных свойств пород, слагающих океаническое дно.
Ещё в начале ХХ в. было установлено, что намагниченность современных лав соответствует нынешнему магнитному полю Земли, а у древних лав она часто ориентирована под большими углами или вообще противоположна направлению современного поля. По сути дела эта картина отражает состояние магнитного поля в предшествующие геологические эпохи. В базальтовых лавах много железа, и они, затвердевая по мере охлаждения, намагничивались в соответствии с существовавшим в тот период геомагнитным полем.
Имелись также данные о перемене полярности: северный магнитный полюс Земли становился южным, и наоборот. Зарегистрировано 16 инверсий магнитных полюсов за последние несколько миллионов лет, (причины такой перемены полюсов до сих пор окончательно не выяснены, предположительно её вызвали процессы, происходившие в жидком ядре.). И, как оказалось, график этих инверсий свидетельствовал в пользу крупномасштабных перемещений материков. Магнитная съёмка тихоокеанского дна в 1955 и 1957 гг. обнаружила простирающиеся почти параллельно с севера на юг "полосы" с магнитными полями аномальной напряжённости.
А в 1963 г. были открыты полосовые магнитные аномалии, вытянутые параллельно хребту Карлсберг в Индийском океане. К этому времени уже стала довольно известной гипотеза, выдвинутая в 1960 г. профессором Принстонского университета (США) Гарри Хессом и названная позже гипотезой спрединга, или "расширения морского дна". По ней, горячая полурасплавленная мантийная масса поднимается под срединно-океаническими хребтами, распространяется в стороны от них в виде мощных потоков, которые разрывают и расталкивают плиты литосферы в разные стороны. Мантийное вещество заполняет образовавшиеся с обеих сторон от хребтов трещины-рифты.
Но площадь поверхности Земли, как и её объём, практически не изменились за время её существования. Поэтому, если новые участки поверхности наращиваются вдоль хребтов, то где-нибудь они должны и уничтожаться. Вероятнее всего, это происходит в глубоководных океанских желобах. Эти так называемые зоны субдукции (поглощения) расположены вдоль вулканических дуг, протянувшихся в Тихом океане от Аляски вдоль Алеутских островов к Японии, Марианским островам и Филиппинам вплоть до Новой Зеландии и вдоль берегов Америки. Когда в этих зонах земная кора опускается до глубины 100 - 150 км, часть вещества плавится, образуя магму, которая затем в виде лавы прорывается наверх и извергается в вулканах.
Таким образом, земная кора создаётся в рифтовых зонах океанов, как ленточный конвейер, движется со средней скоростью 5 см в год, постепенно остывая.
Гипотеза спрединга может хорошо объяснить и магнитные аномалии морского дна. Если расплавленная порода, изливающаяся в срединно-океанических хребтах, затвердевает с обоих сторон от них, а затем расползается в противоположных направлениях, то она будет создавать полосы, намагниченные согласно с ориентацией магнитного поля в период их застывания. Когда поверхность меняется, вновь образовавшееся морское дно намагничивается в противоположном направлении. Чередование полос даёт подробную картину формирования морского дна по обеим сторонам от активного хребта, причём одна сторона является зеркальным отражением другой.
Первые же магнитные карты тихоокеанского дна у берегов Северной Америки, в районе хребта Хуан-де-Фука, показали наличие зеркальной симметрии. Ещё более симметричная картина обнаружена с обеих сторон центрального хребта в Атлантическом океане.
Используя концепцию дрейфа материков, известную сегодня как "новая глобальная тектоника", можно восстановить взаимное расположение континентов в далёком прошлом. Оказывается, 200 млн. лет назад она составляли еди- ный материк.
Вопрос о ранней эволюции Земли тесно связан с теориями её происхождения. Сегодня известно, что наша планета образовалась около 4.6 млрд лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась её масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля всё сильнее разогревалась. При ударах на ней возникали кратеры, причём выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.
Чем крупнее были падавшие тела, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучится в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100-1000 км могла приблизиться к точке плавления.
Дополнительное повышение температуры, вероятно, вызывал распад короткоживущих радиоактивных изотопов. По-видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а затем вследствие более высокой плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться ещё на стадии её формирования.
Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определённая часть более тяжёлого вещества всё же успевала опуститься под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.
Предположительно ядро сформировалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристаллизоваться - так зародилось твёрдое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы. Развитие других оболочек продолжалось гораздо дольше и в некотором отношении не закончилось до сих пор.
Литосфера сразу после своего образования имела небольшую толщину и была очень неустойчивой. Она снова поглощалась мантией, разрушалась в эпоху великой бомбардировки (от 4,2 до 3,9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки - многочисленные кратеры и моря (области, заполненные излившейся магмой).
На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стёрли следы этого периода. Около 3.8 млрд. лет назад сложилась первая лёгкая и, следовательно, "непотопляемая" гранитная кора. В то время планета уже имела воздушную оболочку и океаны, а необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период.
Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров, кислорода в ней было мало, но он вырабатывался в результате, во-первых, в результате фотохимической диссоциации воды и, во- вторых, вследствие фотосинтезирующей деятельности простых организмов, таких, как сине - зелёные водоросли. 600 млн. лет назад на Земле было несколько подвижных континентальных плит, весьма похожих на современные.
Новый сверхматерик - Пангея - появился значительно позже. Он существовал 300-200 млн. лет назад, а затем распался на части, которые и сформировали нынешние материки.
Что ждёт Землю в будущем?
На этот вопрос можно ответить лишь с большой степенью неопределённости, абстрагируясь как от возможного внешнего, космического влияния, так и от деятельности человечества, преобразующего окружающую среду, причём не всегда в лучшую сторону. В конце концов недра Земли остынут до такой степени, что конвекция в мантии и, следовательно, движение материков (а значит, и горообразование, извержение вулканов, землетрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрёт неровности земной коры, и поверхность планеты скроется под водой.
Дальнейшая судьба Земли будет определяться ее среднегодовой температурой. Если она значительно понизится, то океан замёрзнет и Земля покроется ледяной коркой. Если же температура повысится (а скорее к этому и приведёт возрастающая светимость Солнца), то вода испарится, обнажив равную поверхность планеты. Очевидно, и в том, и в другом случае жизнь человечества на Земле будет уже невозможна, по крайней мере с точки зрения высказанных гипотез.
2. Планета Земля как сложная динамическая система

В настоящее время Земля обладает атмосферой массой несколько менее миллионной доли массы планеты. Вблизи поверхности она содержит 78,08% азота, 20,05% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5-6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 9,5 километров плотность воздуха в миллион раз ниже, чем у поверхности.
На этом уровне и химический состав атмосферы уже иной. Растёт доля лёгких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.
Атмосфера представляет собой газовую оболочку, окружающую планету. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава Земли, а также определяются историей ее формирования, начиная с момента зарождения. В этом смысле атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие - азот и кислород в соотношении приблизительно 4:1.
На человека оказывает воздействие главным образом состояние нижних 15-25 км атмосферы, поскольку именно в этом слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека.
Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли. Высокие слои атмосферы - это также и химическая лаборатория, поскольку там в условиях, близких к вакууму, некоторые атмосферные газы под влиянием мощного потока солнечной энергии вступают в химические реакции. Наука, изучающая эти взаимосвязанные явления и процессы, называется физикой высоких слоев атмосферы.
Пока ракеты-зонды и искусственные спутники не исследовали внешние слои атмосферы на расстояниях, в несколько раз превосходящих радиус Земли, считалось, что по мере удаления от земной поверхности атмосфера становится более разреженной и плавно переходит в межпланетное пространство.
Сейчас установлено, что потоки энергии из глубоких слоев Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до внешних пределов Солнечной системы. Этот так называемый "солнечный ветер" обтекает магнитное поле Земли, формируя удлиненную "полость", внутри которой и сосредоточена земная атмосфера. Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, - с противоположной, ночной стороны.
Граница магнитного поля Земли называется магнитопаузой. С дневной стороны эта граница проходит на расстоянии около семи земных радиусов от поверхности, но в периоды повышенной солнечной активности оказывается еще ближе к поверхности Земли. Магнитопауза является одновременно границей земной атмосферы, внешняя оболочка которой называется также магнитосферой, так как в ней сосредоточены заряженные частицы (ионы), движение которых обусловлено магнитным полем Земли.
Общий вес газов атмосферы составляет приблизительно 4,5·1015 т. Таким образом, "вес" атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2.
Из сказанного выше следует, что Землю от межпланетного пространства отделяет мощный защитный слой. Космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца и еще более жестким космическим излучением, и эти виды радиации губительны для всего живого. На внешней границе атмосферы интенсивность излучения смертоносна, но значительная его часть задерживается атмосферой далеко от поверхности Земли. Поглощением этого излучения объясняются многие свойства высоких слоев атмосферы и особенно происходящие там электрические явления.
Самый нижний, приземный слой атмосферы особенно важен для человека, который обитает в месте контакта твердой, жидкой и газообразной оболочек Земли. Верхняя оболочка "твердой" Земли называется литосферой.
Около 72% поверхности Земли покрыто водами океанов, составляющими большую часть гидросферы. Гидросфера Земли Вода покрывает более 70% поверхности земного шара, а средняя глубина Мирового океана около 4 км. Масса гидросферы примерно 1,46•1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей Земли. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн. тонн углекислого газа, а растворённого кислорода - 8 трлн. тонн.
Атмосфера граничит как с литосферой, так и с гидросферой. Человек живет на дне воздушного океана и вблизи или выше уровня океана водного. Взаимодействие этих океанов является одним из важных факторов, определяющих состояние атмосферы.
Нижние слои атмосферы состоят из смеси газов: азот (78,08%), кислород (20,95%), аргон (0,93%), углекислый газ (0,03%), неон (0,0018%), гелий (0,0005%), криптон (0,0001%), водород (0,00005), ксенон (0,000009%).
Кроме приведенных в таблице, в виде небольших примесей в воздухе присутствуют и другие газы: озон, метан, такие вещества, как оксид углерода, оксиды азота и серы, аммиак.
В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, приводящего к распаду молекул кислорода на атомы. Атомарный кислород является основным компонентом этих слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы - водород и гелий.
Поскольку основная масса вещества сосредоточена в нижних 30 км, то изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.
Солнце является главным источником энергии, поступающей на Землю. Находясь на расстоянии около 150 млн. км от Солнца, Земля получает примерно одну двухмиллиардную часть излучаемой им энергии, главным образом в видимой части спектра, которую человек называет "светом". Большая часть этой энергии поглощается атмосферой и литосферой. Земля также излучает энергию, в основном в виде длинноволновой инфракрасной радиации. Таким образом, устанавливается равновесие между получаемой от Солнца энергией, нагреванием Земли и атмосферы и обратным потоком тепловой энергии, излучаемой в пространство.
Механизм этого равновесия крайне сложен. Пыль и молекулы газов рассеивают свет, частично отражая его в мировое пространство. Еще большую часть приходящей радиации отражают облака. Часть энергии поглощается непосредственно молекулами газов, но в основном - горными породами, растительностью и поверхностными водами. Водяной пар и углекислый газ, присутствующие в атмосфере, пропускают видимое излучение, но поглощают инфракрасное. Тепловая энергия накапливается главным образом в нижних слоях атмосферы. Подобный эффект возникает в теплице, когда стекло пропускает свет внутрь и почва нагревается. Поскольку стекло относительно непрозрачно для инфракрасной радиации, в парнике аккумулируется тепло. Нагрев нижних слоев атмосферы за счет присутствия водяного пара и углекислого газа часто называют парниковым эффектом.
Существенную роль в сохранении тепла в нижних слоях атмосферы играет облачность. Если облака рассеиваются или возрастает прозрачность воздушных масс, температура неизбежно понижается по мере того, как поверхность Земли беспрепятственно излучает тепловую энергию в окружающее пространство. Вода, находящаяся на поверхности Земли, поглощает солнечную энергию и испаряется, превращаясь в газ - водяной пар, который выносит огромное количество энергии в нижние слои атмосферы. При конденсации водяного пара и образовании при этом облаков или тумана эта энергия освобождается в виде тепла. Около половины солнечной энергии, достигающей земной поверхности, расходуется на испарение воды и поступает в нижние слои атмосферы.
Таким образом, вследствие парникового эффекта и испарения воды атмосфера прогревается снизу. Этим отчасти объясняется высокая активность ее циркуляции по сравнению с циркуляцией Мирового океана, который прогревается только сверху и потому значительно стабильнее атмосферы.
Помимо общего нагревания атмосферы солнечным "светом", значительное прогревание некоторых ее слоев происходит за счет ультрафиолетового и рентгеновского излучения Солнца.
По сравнению с жидкостями и твердыми телами, в газообразных веществах сила притяжения между молекулами минимальна. По мере увеличения расстояния между молекулами газы способны расширяться беспредельно, если им ничто не препятствует. Нижней границей атмосферы является поверхность Земли. Строго говоря, этот барьер непроницаем, так как газообмен происходит между воздухом и водой и даже между воздухом и горными породами, но в данном случае этими факторами можно пренебречь.
Поскольку атмосфера является сферической оболочкой, у нее нет боковых границ, а имеются только нижняя граница и верхняя (внешняя) граница, открытая со стороны межпланетного пространства. Через внешнюю границу происходит утечка некоторых нейтральных газов, а также поступление вещества из окружающего космического пространства. Большая часть заряженных частиц, за исключением космических лучей, обладающих высокой энергией, либо захватывается магнитосферой, либо отталкивается ею.
На атмосферу действует также сила земного притяжения, которая удерживает воздушную оболочку у поверхности Земли. Атмосферные газы сжимаются под действием собственного веса. Это сжатие максимально у нижней границы атмосферы, поэтому и плотность воздуха здесь наибольшая. На любой высоте над земной поверхностью давление воздуха равно весу вышележащего столба атмосферы, приходящемуся на единицу площади. Поэтому с высотой давление монотонно уменьшается, а поскольку оно находится в прямой связи с плотностью, то и плотность воздуха уменьшается с высотой.
Если бы атмосфера представляла собой "идеальный газ" с не зависящим от высоты постоянным составом, неизменной температурой и на нее действовала бы постоянная сила тяжести, то давление уменьшалось бы в 10 раз на каждые 20 км высоты. Реальная атмосфера незначительно отличается от идеального газа примерно до высоты 100 км, но затем давление с высотой убывает медленнее, так как изменяется состав воздуха. Небольшие изменения в описанную модель вносит и уменьшение силы тяжести по мере удаления от центра Земли, составляющее вблизи земной поверхности около 3% на каждые 100 км высоты.
В отличие от атмосферного давления, температура с высотой не понижается непрерывно. Она убывает приблизительно до высоты 10 км, а затем вновь начинает расти. Это происходит при поглощении ультрафиолетовой солнечной радиации кислородом. При этом образуется газ озон, молекулы которого состоят из трех атомов кислорода. Он тоже поглощает ультрафиолетовое излучение, и поэтому этот слой атмосферы, называемый озоносферой, нагревается.
Выше температура вновь понижается, так как там гораздо меньше молекул газа, и соответственно сокращается поглощение энергии. В еще более высоких слоях температура вновь повышается вследствие поглощения атмосферой наиболее коротковолнового ультрафиолетового и рентгеновского излучения Солнца. Под воздействием этого мощного излучения происходит ионизация атмосферы, т.е. молекула газа теряет электрон и приобретает положительный электрический заряд. Такие молекулы становятся положительно заряженными ионами. Благодаря наличию свободных электронов и ионов этот слой атмосферы приобретает свойства электропроводника.
Полагают, что температура продолжает повышаться до высот, где атмосфера переходит в межпланетное пространство. На расстоянии нескольких тысяч километров от поверхности Земли, вероятно, преобладают температуры от 5000 °C до 10000 °C. Хотя молекулы и атомы имеют очень большие скорости движения, а следовательно, и высокую температуру, этот разреженный газ не является "горячим" в привычном смысле. Из-за мизерного количества молекул на больших высотах их суммарная тепловая энергия весьма невелика.
Таким образом, атмосфера состоит из отдельных слоев (т.е. серии концентрических оболочек, или сфер), выделение которых зависит от того, какое свойство представляет наибольший интерес. На основании осредненного распределения температур метеорологи разработали схему строения идеальной "средней атмосферы".
Тропосфера - нижний слой атмосферы, простирающийся до первого термического минимума (так называемой тропопаузы). Верхняя граница тропосферы зависит от географической широты (в тропиках - 18-20 км, в умеренных широтах - около 10 км) и времени года. Национальная метеорологическая служба США провела зондирование вблизи Южного полюса и выявила сезонные изменения высоты тропопаузы. В марте тропопауза находится на высоте около 7,5 км. С марта до августа или сентября происходит неуклонное охлаждение тропосферы, и ее граница на короткий период в августе или сентябре поднимается приблизительно до высоты 11,5 км. Затем с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, где и остается до марта, испытывая колебания в пределах всего 0,5 км.
Именно в тропосфере в основном формируется погода, которая определяет условия существования человека. Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и в более высоких слоях.
Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определенного направления. Турбулентные вихри, подобные небольшим водоворотам, образуются под воздействием трения и динамического взаимодействия между медленно и быстро движущимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют "турбулентностью ясного неба".
Вышележащий слой атмосферы часто ошибочно описывают как слой со сравнительно постоянными температурами, где ветры дуют более или менее устойчиво и где метеорологические элементы мало меняются. Верхние слои стратосферы нагреваются при поглощении кислородом и озоном солнечного ультрафиолетового излучения. Верхняя граница стратосферы (стратопауза) проводится там, где температура несколько повышается, достигая промежуточного максимума, который нередко сопоставим с температурой приземного слоя воздуха.
На основе наблюдений, проведенных с помощью самолетов и шаров-зондов, приспособленных для полетов на постоянной высоте, в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особенно опасны для высокоскоростных летательных аппаратов. Сильные ветры, называемые струйными течениями, дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и проявляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты.
Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образование озона), оказывает воздействие на процессы в тропосфере. Особенно активное перемешивание связано с атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекался в нижние слои стратосферы. Значительные успехи были достигнуты в изучении вертикальной структуры нижних слоев атмосферы в связи с совершенствованием техники запуска на высоты 25-30 км радиозондов.
Мезосфера, располагающаяся выше стратосферы, представляет собой оболочку, в которой до высоты 80-85 км происходит понижение температуры до минимальных показателей для атмосферы в целом. Рекордно низкие температуры до -110° С были зарегистрированы метеорологическими ракетами, запущенными с американо-канадской установки в Форт-Черчилле (Канада). Верхний предел мезосферы (мезопауза) примерно совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца, что сопровождается нагреванием и ионизацией газа.
В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока еще недостаточно изучены.
Термосфера представляет собой слой атмосферы, в котором непрерывно повышается температура. Его мощность может достигать 600 км.
Давление и, следовательно, плотность газа с высотой постоянно уменьшаются. Вблизи земной поверхности в 1 м3 воздуха содержится около 2,5•1025 молекул, на высоте около 100 км, в нижних слоях термосферы, - приблизительно 1019, на высоте 200 км, в ионосфере, - 5·1015 и, по расчетам, на высоте около 850 км - примерно 1012 молекул. В межпланетном пространстве концентрация молекул составляет 108-109 на 1 м3. На высоте около 100 км молекул мало и они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически движущаяся молекула до столкновения с другой такой же молекулой, называется ее средним свободным пробегом. Слой, в котором эта величина настолько увеличивается, что вероятностью межмолекулярных или межатомных столкновений можно пренебречь, находится на границе между термосферой и вышележащей оболочкой (экзосферой) и называется термопаузой. Термопауза отстоит от земной поверхности примерно на 650 км.
При определенной температуре скорость движения молекулы зависит от ее массы: более легкие молекулы движутся быстрее тяжелых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме того, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы.
Поэтому по мере удаления от поверхности Земли атомарный кислород приобретает все большее значение в составе атмосферы и на высоте около 200 км становится ее главным компонентом. Выше, приблизительно на расстоянии 1200 км от поверхности Земли, преобладают легкие газы - гелий и водород. Из них и состоит внешняя оболочка атмосферы. Такое разделение по весу, называемое диффузным расслоением, напоминает разделение смесей с помощью центрифуги.
Экзосферой называется внешний слой атмосферы, выделяемый на основе изменений температуры и свойств нейтрального газа. Молекулы и атомы в экзосфере вращаются вокруг Земли по орбитам под воздействием силы тяжести. Некоторые из этих орбит параболические и похожи на траектории метательных снарядов. Молекулы могут вращаться вокруг Земли и по эллиптическим орбитам, как спутники. Некоторые молекулы, в основном водорода и гелия, имеют разомкнутые траектории и уходят в космическое пространство
Пытаясь объяснить механизм возникновения полярных сияний, ученые XIX в. предположили, что в атмосфере существует зона с электрически заряженными частицами. В XX в. экспериментально были получены убедительные доказательства существования на высотах от 85 до 400 км слоя, отражающего радиоволны. В настоящее время известно, что его электрические свойства являются результатом ионизации атмосферного газа. Поэтому обычно этот слой называют ионосферой.
Воздействие на радиоволны происходит главным образом из-за наличия в ионосфере свободных электронов, хотя механизм распространения радиоволн связан с наличием крупных ионов. Последние также представляют интерес при изучении химических свойств атмосферы, поскольку они активнее нейтральных атомов и молекул. Химические реакции, протекающие в ионосфере, играют важную роль в ее энергетическом и электрическом балансе.
Наблюдения, проведенные при помощи геофизических ракет и спутников, дали массу новой информации, свидетельствующей, что ионизация атмосферы происходит под воздействием солнечной радиации широкого спектра. Основная ее часть (более 90%) сосредоточена в видимой части спектра. Ультрафиолетовое излучение с меньшей длиной волны и большей энергией, чем у фиолетовых световых лучей, испускается водородом внутренней части атмосферы Солнца (хромосферы), а рентгеновское излучение, обладающее еще более высокой энергией, - газами внешней оболочки Солнца (короны).
Нормальное (среднее) состояние ионосферы обусловлено постоянным мощным излучением. Регулярные изменения происходят в нормальной ионосфере под воздействием суточного вращения Земли и сезонных различий угла падения солнечных лучей в полдень, но происходят также непредсказуемые и резкие изменения состояния ионосферы.
Как известно, на Солнце возникают мощные циклически повторяющиеся возмущения, которые достигают максимума каждые 11 лет. Наблюдения по программе Международного геофизического года (МГГ) совпали с периодом наиболее высокой солнечной активности за весь срок систематических метеорологических наблюдений, т.е. с начала XVIII в. В периоды высокой активности яркость некоторых областей на Солнце возрастает в несколько раз, и они посылают мощные импульсы ультрафиолетового и рентгеновского излучения. Такие явления называются вспышками на Солнце. Они продолжаются от нескольких минут до одного-двух часов.
Во время вспышки извергается солнечный газ (в основном протоны и электроны), и элементарные частицы устремляются в космическое пространство. Электромагнитное и корпускулярное излучение Солнца в моменты таких вспышек оказывает сильное воздействие на атмосферу Земли. Первоначальная реакция отмечается через 8 мин после вспышки, когда интенсивное ультрафиолетовое и рентгеновское излучение достигает Земли. В результате резко повышается ионизация; рентгеновские лучи проникают в атмосферу до нижней границы ионосферы; количество электронов в этих слоях возрастает настолько, что радиосигналы почти полностью поглощаются ("гаснут"). Дополнительное поглощение радиации вызывает нагрев газа, что способствует развитию ветров. Ионизированный газ является электрическим проводником, и когда он движется в магнитном поле Земли, проявляется эффект динамо-машины и возникает электрический ток. Такие токи могут в свою очередь вызывать заметные возмущения магнитного поля и проявляться в виде магнитных бурь.
Эта начальная фаза занимает лишь короткое время, соответствующее продолжительности солнечной вспышки. Во время мощных вспышек на Солнце в космическое пространство устремляется поток ускоренных частиц. Когда он направлен в сторону Земли, наступает вторая фаза, оказывающая большое влияние на состояние атмосферы.
Многие природные явления, среди которых наиболее известны полярные сияния, свидетельствуют о том, что значительное количество заряженных частиц достигает Земли. Тем не менее процессы отрыва этих частиц от Солнца, их траектории в межпланетном пространстве и механизмы взаимодействия с магнитным полем Земли и магнитосферой пока еще недостаточно изучены. Проблема усложнилась после открытия в 1958 г. Джеймсом Ван Алленом удерживаемых геомагнитным полем оболочек, состоящих из заряженных частиц. Эти частицы перемещаются из одного полушария в другое, вращаясь по спиралям вокруг силовых линий магнитного поля.
Вблизи Земли на высоте, зависящей от формы силовых линий и от энергии частиц, располагаются "точки отражения", в которых частицы меняют направление движения на противоположное. Поскольку напряженность магнитного поля уменьшается с удалением от Земли, орбиты, по которым движутся эти частицы, искажаются: электроны отклоняются к востоку, а протоны - к западу. Поэтому они распределяются в виде поясов вокруг земного шара.
Солнечная энергия оказывает влияние на всю атмосферу. Выше уже упоминались пояса, образованные заряженными частицами в магнитном поле Земли и вращающиеся вокруг нее Эти пояса ближе всего подходят к земной поверхности в приполярных районах, где наблюдаются полярные сияния.
Вероятно, захваченные частицы отдают часть своей энергии в атмосферу, особенно при столкновении с молекулами газа вблизи точек отражения, и сходят со своих прежних орбит. Так происходит нагрев высоких слоев атмосферы в зоне полярных сияний.
Еще одно важное открытие было сделано при изучении орбит искусственных спутников. Луиджи Яккиа, астроном из Смитсоновской астрофизической обсерватории, полагает, что небольшие отклонения этих орбит обусловлены изменениями плотности атмосферы при ее нагреве Солнцем. Он предположил существование на высоте более 200 км в ионосфере максимума концентрации электронов, который не соответствует солнечному полудню, а под воздействием силы трения запаздывает по отношению к нему примерно на два часа. В это время значения плотности атмосферы, обычные для высоты 600 км, наблюдаются на уровне около 950 км. Кроме того, максимум концентрации электронов испытывает нерегулярные колебания вследствие кратковременных вспышек ультрафиолетового и рентгеновского излучения Солнца. Л. Яккиа обнаружил также кратковременные колебания плотности воздуха, соответствующие вспышкам на Солнце и возмущениям магнитного поля. Эти явления объясняются вторжением частиц солнечного происхождения в атмосферу Земли и нагревом тех ее слоев, где проходят орбиты спутников.
Хотя иногда метеорные дожди производят глубокое впечатление своими световыми эффектами, отдельные метеоры видны довольно редко. Гораздо многочисленнее невидимые метеоры, слишком малые, чтобы быть различимыми в момент их поглощения атмосферой. Некоторые из мельчайших метеоров, вероятно, совершенно не нагреваются, а лишь захватываются атмосферой. Эти мелкие частицы с размерами от нескольких миллиметров до десятитысячных долей миллиметра называются микрометеоритами. Количество ежесуточно поступающего в атмосферу метеорного вещества составляет от 100 до 10000 т, причем большая часть этого вещества приходится на микрометеориты.
Поскольку метеорное вещество частично сгорает в атмосфере, ее газовый состав пополняется следами различных химических элементов. Например, каменные метеоры привносят в атмосферу литий. Сгорание металлических метеоров приводит к образованию мельчайших сферических железных, железоникелевых и других капелек, которые проходят сквозь атмосферу и осаждаются на земной поверхности. Их можно обнаружить в Гренландии и Антарктиде, где почти без изменений годами сохраняются ледниковые покровы. Океанологи находят их в донных океанических отложениях.
Большая часть метеорных частиц, поступивших в атмосферу, осаждается примерно в течение 30 суток. Некоторые ученые считают, что эта космическая пыль играет важную роль в формировании таких атмосферных явлений, как дождь, поскольку служит ядрами конденсации водяного пара. Поэтому предполагают, что выпадение осадков статистически связано с крупными метеорными дождями. Однако некоторые специалисты полагают, что, поскольку общее поступление метеорного вещества во много десятков раз превышает его поступление даже с крупнейшим метеорным дождем, изменением в общем количестве этого вещества, происходящим в результате одного такого дождя, можно пренебречь. Однако несомненно, что наиболее крупные микрометеориты и, конечно, видимые метеориты оставляют длинные следы ионизации в и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.