Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Химический состав и строение клеточной оболочки. Функциональное значение оболочки

Информация:

Тип работы: Контрольная. Добавлен: 21.10.11. Страниц: 30. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание


12. Химический состав и строение клеточной оболочки. Функциональное значение оболочки. 3
23. Классификация ферментов. Ферменты класса гидролаз. 5
53. Структура и функции устъичного аппарата растений. Роль кутикулярной транспирации. 8
86. Энергетика дыхания. Понятие о физиологической эффективности дыхания. 11
92.Суммарные уравнения химических превращений при аэробной и анаэробном дыхании. Интенсивность дыхания. Методы ее определения. 12
120.Физиологическая роль веществ вторичного происхождения (эфирных масел, гликозидов, дубильных веществ) 15
135.Световая стадия развития растений. Понятие о фотопериодизме. 21
145.Влияние температуры и света на покой семян 24
178.Пути повышения засухоуслойсивости культурных растений. 28
Литература 31


12. Химический состав и строение клеточной оболочки. Функциональное значение оболочки.


Клеточная стенка, обладает прочностью способна к росту, она прозрачная и хорошо пропускает солнце, легко проникает вода. Основа оболочки с-молекулы целлюлозы, собранные в сложные пучки – фибриллы, Они образуют каркас, погруженный в основу – матрикс, состоящий из гемицеллюлозы, пектинов, гликопротеидов. Первоначально число фибрилл невелико, но с возрастом они увеличивается и клетка теряет способность к растяжению. В матриксе часто обнаруживается неуглеводный компонент – легнин. Одревеснение клеточной оболочки происходит в результате отложения лигнина, Лигнин повышает устойчивость тканей к разрушительному действию бактерий и грибов. Одревесневшие оболочки не теряют способности пропускать воду. Клетки с одревесневшими стенками могут оставаться живыми, но чаще становятся мертвыми. Стенки некоторых клеток могут включать: воск, кутину, суберин.
Функции оболочки: придает клетке форму; отделяет одну клетку от другой, является скелетом для каждой клетки и придает прочность всему растению, выполняет защитную функцию. Опробковение вызывается особым жироподобным веществом — суберином. Опробковевшие оболочки становятся непроницаемыми для воды и газов, и содержимое клеток с опробковевшими оболочками отмирает. В местах ранения растения также образуются клетки с опробковевшими стенками, которые отделяют здоровые ткани от поврежденных. Кутинизация заключается в выделении жироподобного вещества кутина. Обычно кутинизируются наружные стенки кожицы листьев и "травянистых стеблей. Это делает их менее проницаемыми для воды, уменьшает испарение у растений. Кутин образует на поверхности органа пленку, называемую кутикулой. Минерализация клеточных оболочек — это отложение: кремнезема и солей кальция. Наиболее сильно инкрустируются оболочки клеток кожицы листьев и стеблей злаков, осок, хвощей. Листьями злаков и осок можно поранить руки. Ослизнение оболочек – превращение целлюлозы и пектиновых веществ в слизи и камеди. Ослизнение хорошо наблюдается на семенах льна, находившихся в воде. Образование слизей способствует лучшему поглощению воды семенами и прикреплению их к почве.
Химический состав и строение клеточной стенки, ее функциональное значение
Таблица 1. Химический состав первичных растительных клеточных оболочек (колеоптилей, стеблей, листьев, волосков)
Вещество в % на сухое вещество
Гемицеллюлоза 53
Целлюлоза 30
Пектиновые вещества 5
Белки 5
Липиды 7
Клеточная оболочка начинает развиваться с образования клеточной пластинки в анафазе митоза. Это происходит сразу после деления ядра. Целлюлоза в виде микрофибрилл образует каркас. Микрофибриллы -- эластичный строительный элемент клеточной оболочки (стенки). Диаметр микрофибриллы составляет 10--30 нм, длина несколько микрометров.
Обычно считают, что клеточная оболочка не мешает взаимодействию цитоплазмы с компонентами внешней среды. Многочисленные экспериментальные исследования показали, что катионы и анионы могут быстро проходить внутрь клетки, не взаимодействуя с клеточной оболочкой. Однако существует и другое бесспорное положение - клеточная оболочка является прекрасным адсорбентом веществ, которые поступают из внешней среды.
Выяснение роли клеточной оболочки в поглощении веществ усложняется тем, что в живой клетке оболочка является не мертвым, а живым образованием. Клеточная оболочка в значительной мере пронизана протопластом, содержимое которого изменяется с возрастом клетки. При этом изменяется структура и химический состав клеточной оболочки. Не вызывает сомнения и то, что в поры оболочки клетки, которые заполнены раствором, вещества из внешней среды поступают вследствие диффузии.
Таким образом, в клеточной оболочке минеральные вещества, поступающие из внешней среды, могут связываться и удерживаться ее структурными элементами, живой цитоплазмой и раствором, имеющимся в порах. Скорость связывания различных изотопов структурными элементами живой цитоплазмы свидетельствует о том, что этот процесс осуществляется или на поверхности в плазмодесмах, или в порах, которые содержат цитоплазму. Советский ученый Н. Г. Потапов, используя метод дифференциального центрифугирования и радиоактивные изотопы 36S, 32P, 131J, выяснил их распределение по структурным элементам клетки. Установлено, что в клеточных оболочках связывается не более 20% серы и фосфора, а йода 50% от всего поглощенного за определенное время вещества.

23. Классификация ферментов. Ферменты класса гидролаз.

Современные классификация и номенклатура ферментов были разработаны Комиссией по ферментам Международного биохимического союза и утверждены на V Международном биохимическом конгрессе в 1961 г. в Москве.
Необходимость систематики номенклатуры диктовалась прежде всего стремительным ростом числа вновь открываемых ферментов, которым разные исследователи присваивали названия по своему усмотрению. Более того, одному и тому же ферменту часто давали два или несколько названий, что вносило путаницу в номенклатуру. Некоторые названия ферментов вообще не отражали тип катализируемой реакции, а при наименовании фермента исходили из названия субстрата, на который действует фермент, с добавлением окончания -аза: в частности, амилазы (ферменты, гидро-лизирующие углеводы), липазы (действующие на липиды), протеиназы (гидролизирующие белки) и т.д.
До 1961 г. не было и единой классификации ферментов. Трудности заключались в том, что разные исследователи за основу классификации ферментов брали различные принципы. Комиссией были рассмотрены 3 принципа, которые могли служить основой для классификации ферментов и их обозначения. Первый принцип – химическая природа фермента, т.е. принадлежность к флавопротеинам, пиридоксальфосфатпротеинам, гемо-протеинам, металлопротеинам и т. д. Однако этот принцип не мог служить общей основой для классификации, так как только для небольшого числа ферментов известны простетические группы, доступные идентификации и прямому определению. Второй принцип – химическая природа субстрата, на который действует фермент. По этому принципу трудно классифицировать фермент, так как в качестве субстрата могут служить разнообразные соединения внутри определенного класса веществ (белки, углеводы, липиды, нуклеиновые кислоты) и бесчисленное множество промежуточных продуктов обмена. В основу принятой классификации положен третий принцип – тип катализируемой реакции , который является специфичным для действия любого фермента. Этот принцип логично использовать в качестве основы для классификации и номенклатуры ферментов.
Таким образом, тип катализируемой химической реакции в сочетании с названием субстрата (субстратов) служит основой для систематического наименования ферментов. Согласно Международной классификации, ферменты делят на шесть главных классов, в каждом из которых несколько подклассов: 1) оксидоредуктазы; 2) трансферазы; 3) гидролазы; 4) лиазы; 5) изомеразы; 6) лигазы (синтетазы)


Таблица 2. Классификация ферментов.
Классы
ферментов Катализируемая
реакция Примеры ферментов
или их групп
(даны тривиальные названия)
Оксидоредуктазы Перенос атомов водорода или электронов от одного вещества к другому Дегидрогеназа,
оксидаза
Трансферазы Перенос определенной группы атомов – метильной, ацильной, фосфатной или аминогруппы – от одного вещества к другому Трансаминаза, киназа
Гидролазы Реакция гидролиза Липаза, амилаза, пептидаза
Лиазы Негидролитическое присоединение к субстрату или отщепление от него группы атомов. При этом могут разрываться связи С–С, С–N, C–O, или С–S Декарбоксилаза, фумараза, альдолаза
Изомеразы Внутримолекулярная перестройка Изомера, мутаза
Лигазы Соединение двух молекул в результате образования новых связей С–С, С–N, C–O или С–S, сопряженное с распадом АТФ Синтетаза
Гидролазы. В класс гидролаз входит большая группа ферментов, катализирующих расщепление внутримолекулярных связей органических веществ при участии молекулы воды. Наименование их составляют по форме «субстрат-гидролаза». К ним относятся: зстеразы – ферменты, катализирующие реакции гидролиза и синтеза сложных эфиров; гликозидазы, ускоряющие разрыв гликозидных связей; фосфатазы и пептидгидролазы, катализирующие гидролиз фосфоангидридных и пептидных связей; амидазы, ускоряющие разрыв амидных связей, отличных от пептидных, и др.


53. Структура и функции устъичного аппарата растений. Роль кутикулярной транспирации.

Устьица представляют собой высокоспециализированные образования эпидермы, состоящие из двух замыкающих клеток, между которыми имеется своеобразный межклетник, или устьичная щель. Щель может расширяться и сужаться, регулируя транспирацию и газообмен. Под щелью располагается дыхательная, или воздушная, полость, окруженная клетками мякоти листа . Клетки эпидермы, примыкающие к замыкающим, получили название побочных, или околоустьичных. Они участвуют в движении замыкающих клеток. Замыкающие и побочные клетки образуют устьичный аппарат. Число побочных клеток и их расположение относительно устьичной щели позволяют выделять ряд устьичных типов. Их изучением занимается стоматография. Данные стоматографии нередко используются в систематике растений для уточнения систематического положения таксонов. Наиболее часто встречающиеся устьичные типы показаны на рисунке 38 .
Аномоцитный тип устьичного аппарата обычен для всех групп высших растений, исключая хвойные. Побочные клетки в этом случае не отличаются от остальных клеток эпидермы. Диацитный тип характеризуется только двумя побочными клетками, о...
**************************************************************


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.