На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 27.09.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


12
Основные понятия цитологии

Введение

Наука о клетке называется цитологией (греч. "цитос" клетка, "логос" - наука). Цитология изучает строение и химический состав клеток, функции внутриклеточных структур и клеток внутри организма, размножение и развитие клеток, приспособление клеток к условиям окружающей среды.
Впервые название "клетка" применил Роберт Гук в середине XVII в. при рассмотрении под микроскопом, им сконструированным, тонкого среза пробки. Он увидел, что пробка состоит из ячеек - клеток (англ. "cell" - камера, келья). К началу XIX в., после того как появились хорошие микроскопы, были разработаны методы фиксации и окраски клетки, представления о клеточном строении организмов получили общее признание.
В 1838 - 1939 гг. двое немецких ученых - ботаник М. Шлейден и зоолог Т. Шванн, собрали все доступные им сведения и наблюдения в единую теорию, утверждавшую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Спустя примерно 20 лет после провозглашения Шлейдоном и Шванном клеточной другой немецкий ученый - врач Р. Вирхов сделал очень важное обобщение: клетка может возникнуть из предшествующей клетки. Академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие с клетки и этой клеткой является зигота.
Современная клеточная теория включает следующие основные положения:
1. Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого.
2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
3. Размножение клеток происходит путем их деления, т.е. каждая новая клетка образуется в результате деления исходной (материнской) клетки. Положения о генетической непрерывности относиться не только к клетке в целом, но и некоторым из её более мелких компонентов - к генам и хромосомам, а также к генетическому механизму, обеспечивающему передачу вещества наследственности следующему поколению.
4. В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.
1. Клеточное строение живого

Все живые организмы состоят из клеток - из одной клетки (простейшие) или многих (многоклеточные). Клетка - это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существует эволюционно неклеточные организмы (вирусы), но и они могут размножаться только в клетках. Различные клетки отличаются друг от друга и по строению, и по размерам (размеры клеток колеблются от 1мкм до нескольких сантиметров - это яйцеклетки рыб и птиц), и по форме (могут быть круглые как эритроциты, древовидные как нейроны), и по биохимическим характеристикам (например, в клетках, содержащих хлорофолл или бактериохлорофилл, идут процессы фотосинтеза, которые невозможны при отсутствии этих пигментов), и по функциям (различают половые клетки - гаметы и соматические - клетки тела, которые в свою очередь подразделяются на множество разных типов).
Клетка обладает всеми основными свойствами живой системы: обменом веществ и энергии (метаболизм), размножением и ростом, реактивностью и движением. Она является наименьшей структурной и функциональной единицей живого.
Клетка состоит из трех основных частей: 1) поверхностной или клеточной мембраны, которая отделяет клетку от внешней среды и контролирует обмен между клеткой и средой; 2) цитоплазмы, содержащей разнообразные микроструктуры и органеллы и 3) клеточного ядра, в котором содержится ДНК - хранитель генетической информации.
Клеточная мембрана представляет собой двойной слой молекул липидов, в который встроены молекулы белков. Клетка способна выделять за пределы своей наружной мембраны различные вещества, например слизь, целлюлозу, образующие клеточные стенки, и другие материалы, а также избирательно поглощать различные вещества извне. Мембрана обеспечивает поддержание определенной концентрации солей внутри клетки на постоянном уровне. Гибнущая клетка теряет контроль над внутренней концентрацией различных веществ, особенно солей.
Поглощение и выделение различных веществ живой клеткой контролируется особыми белками, встроенными в мембрану. Эти белки служат как бы воротами или насосами, и их работа связана с потреблением энергии.
Внутри мембраны заключено клеточное содержимое - очень вязкая среда, называемая цитоплазмой. В цитоплазме находятся разнообразные органеллы, которые также обычно окружены мембранами. К ним относятся митохондрии, в которых заключены дыхательные ферменты. Здесь “сжигаются” сахара и синтезируется АТФ (аденозинтрифосфорная кислота), богатая энергией. В растительных клетках кроме митохондрий есть хлоропласты, содержащие хлорофилл. Здесь происходит фотосинтез, в ходе которого синтезируются сахара и молекулы АТФ.
В клетках бактерий ДНК свободно располагается в цитоплазме. В клетках грибов, растений и животных ДНК входит в состав хромосом, которые располагаются в ядре. Ядро отделено от цитоплазмы ядерной мембраной.
В типичной клетке содержится свыше 500 различных ферментов и протекают сотни и даже тысячи химических реакций, которые осуществляются с помощью белков-ферментов. Синтез всех необходимых клетке веществ контролируется следующим образом:
1) С помощью репрессии (подавление) или индукции синтеза на генном уровне. Конечный продукт биосинтеза может выключить работу соответствующего гена (репрессия). Поступившее в клетку или образовашееся в ней вещество может включить работу соответствующего гена (индукция).
2) Посредством ингибирования (подавления) конечным продуктом активности ферментов. Если вещество становится доступным в достаточном количестве, то это ведет к подавлению синтеза как его самого, так и ферментов, участвующих в его образовании.
Ингибирование конечным продуктом есть проявление отрицательной обратной связи, обычного механизма регуляции, который встречается не только в клетках.
2. Жизненный цикл клетки

Жизненный цикл клетки (клеточный цикл) -- это период жизни клетки от одного деления до следующего или от деления до смерти. Для разных типов клеток клеточный цикл различен. Интерфаза -- период между делениями, в котором происходят процессы роста, удвоения молекул ДНК, синтеза белков и других органических соединений, деления митохондрий и пластид, разрастания эндоплазматической сети. Интенсивно аккумулируется энергия. Митоз -- деление, сопровождающееся спирализацией хромосом и образованием аппарата, обеспечивающего равномерное распределение наследственного материала материнской клетки между двумя дочерними. Мейоз -- это особый способ деления клеток, в результате которого количество хромосом уменьшается вдвое и образуются гаплоидные клетки.
Сравнение процессов митоза и мейоза. Митоз и Мейоз Имеют одинаковые фазы деления. Перед делением происходят спирализация и удвоение молекул ДНК. В метафазе на экваторе клетки располагаются удвоенные хромосомы. В метафазе на экваторе клетки располагаются пары гомологичных хромосом. Конъюгация хромосом отсутствует. В профазе гомологичные хромосомы конъюгируют и могут обмениваться участками (кроссинговер). Между делениями происходит удвоение хромосом. Между первым и вторым делениями нет удвоения хромосом. Формируются две дочерние клетки с диплоидным набором хромосом (2п). Формируются четыре клетки с гаплоидным набором хромосом (п). В профазе митоза хромосомы спирализуются, сокращаются и утолщаются. Хроматиды отходят друг от друга, оставаясь соединенными только центромерами. Метафазные хромосомы имеют Х-образную форму, состоят из двух хроматид, концы которых разошлись. В анафазе каждая хромосома разделяется на отдельные хроматиды, которые называются дочерними хромосомами. Они имеют вид палочек, согнутых в месте первичной перетяжки
Метафаза. Завершаются процессы спирализации хромосом и формирования веретена деления. Каждая хромосома прикрепляется центромерой к микротрубочке веретена деления и направляется к центральной части клетки. Центромеры хромосом располагаются на одинаковых расстояниях от полюсов клетки. Хроматиды отделяются друг от друга
Анафаза (самая короткая). Происходит деление центромер и расхождение хроматид к разным полюсам клетки. У каждого полюса собирается диплоидный набор и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.