На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 05.01.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


2
СОДЕРЖАНИЕ:
Введение_________________________________________________________ 3
1. Симметрия природы____________________________________________ 4
2. Законы сохранения_____________________________________________ 7
Заключение______________________________________________________12
Литература______________________________________________________13
ВВЕДЕНИЕ:
Важнейшие достижения в физике элементарных частиц свя-заны с симметрией относительно преобразований некоторых параметров, характеризующих внутренние свойства частиц.
Так, в последние годы получили развитие суперсимметри-ческие модели, обладающие симметрией нового типа, связыва-ющие между собой фермионы и бозоны и постулирующие, что у каждой обычной частицы имеется "суперпартнер" с анало-гичными свойствами (за исключением спина -- вращения эле-ментарной частицы или античастицы вокруг собственной оси, обусловливающего ее электромагнитное поле). Например, элек-троны, кварки, лептоны имеют суперпартнеров -- сэлектроны, скварки. слептоны. Но эта теория еще не подтверждена экспе-риментом.
Существует принцип симметрии Кюри: если условия, одно-значно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действий не нарушит ее. Поэтому, формально, все неравновесные процессы разделяют на скаляр-ные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принци-пом симметрии величины разных размерностей не могут быть связаны друг с другом. Так, скалярная величина не может выз-вать векторную.
Суть методологического значения понятия симметрии наи-более ярко раскрывает высказывание Дж. Ньюмена (1903-1957): "Симметрия устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуа-лью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, ..., строением про-странства, рисунками ваз, квантовой физикой, ... , лепестками цветов, интерференционной картиной рентгеновских лучей, де-лением клеток морских ежей,..., равновесными конфигурация-ми кристаллов, ..., теорией относительности, ...".
В широком понимании, симметричное означает хорошее со-отношение пропорций, а симметрия -- тот вид согласованнос-ти отдельных частей, который объединяет их в целое.
Симметрия имеет два значения:
-- весьма пропорциональное, сбалансированное, способ со-гласования многих частей, объединяющий их в целое (следствие симметрии -- законы сохранения классической физики);
- равновесие (по Аристотелю, это состояние характеризу-ется соотношением крайностей).
1. Симметрия природы

Начало стройной симметрии заложила физика в теории кри-сталлов, что зафиксировано в работах И. Ф. Гесселя (1796 -1872) в 1830 г., Л. В. Гадолина (1828 - 1892) в 1867г., А. Шенфлиса (1853 - 1928) в 1890 г. Первоначально речь шла о геометрических преобразованиях системы: ее переносах и по-воротах.
Фундаментальность значения дальнейшего развития учения о симметрии в том, что каждому непрерывному преобразова-нию отвечает соответствующий закон сохранения, который в последующем был распространен с механики и на квантовую физику.
Так, основной принцип современных калибровочных те-орий фундаментальных взаимодействий Природы состоит в том, что переносчиками взаимодействий выступают опреде-ленные сохраняющиеся величины, обладающие симметрией, оп-ределяющие динамику системы и тем самым позволяющие надеяться на осуществление создания теории "Великого объе-динения взаимодействий", включая теории гравитации.
Основным типам симметрии (С, Р, Т) были даны определе-ния в предыдущем разделе, но симметрию С рассмотрим еще раз. Сильные электромагнитные взаимодействия инвариантны относительно операции зарядового сопряжения: замена всех частиц на соответствующие античастицы. Эта симметрия не является пространственной и рассматривается особо в связи с тем, что характеризует симметрию необычного вида -- зарядо-вой четности, в которой нейтральная частица переходит сама в себя при зарядовой сопряженности.
Благодаря существованию СРТ- и СР-симметрий как для сильных, так и электрослабых взаимодействий выполняется симметрия относительно обращения времени, то есть любому движению под действием этих сил соответствует в Природе симметричное движение, при котором система проходит в об-ратном порядке все состояния что и в первоначальном движе-нии, но с изменением на противоположные направлениями скоростей частиц, спинами, магнитными полями. Из Т-симметрии следуют соотношения между прямыми и обратными реак-циями.
Именно симметрия, относительно перестановки одинаковых частиц, обосновывает принцип неразличимости одинаковых ча-стиц (см. разд. 3.9), то есть приводит к полной их тождествен-ности. Связь спина и статистики является следствием релятивистсюй инвариантности теории и тесно связана с СРТ-теоремой. Под внутренними симметриями понимают симметрии между ча-стицами и полями с различными квантовыми числами. При этом различают глобальные и локальные симметрии.
Симметрия называется глобальной, если параметр преобразования не зави-сит от пространственно-временных координат точки, в которой рассматривается поле. Ее примером является инвариантность лагранжиана относительно калиброванных преобразований вхо-дящих в него полей. Эта инвариантность приводит к аддитив-ному закону сохранения заряда, причем не только электрического, но и барионного, лептонного, странности и т. д.
Локальные симметрии существуют, когда параметры преоб-разований для глобальных симметрии можно рассматривать как произвольные функции пространственно-временных координат. Они позволяют построить теорию, в которой сохраняющиеся величины (заряды) выступают в качестве источников особых калибровочных полей, переносящих взаимодействие между ча-стицами, обладающими соответствующими зарядами.
Динамическая симметрия системы возникает, когда рассмат-ривается преобразование, включающее переходы между состо-яниями симметрии с различными энергиями.
Наиболее разработана теория симметрии кристаллов. В ней под симметрией понимается их свойство совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций.
Симметрия внешней формы (огранки) кристалла определяется симметрией его атом-ного, дискретного трехмерно-периодического строения, кото-рая обусловливает также и симметрию физических свойств кристалла.
Симметрия кристаллов проявляется не только в их структу-ре и свойствах в реальном трехмерном пространстве, но также и при описании энергетического спектра электронов кристалла (зонная теория), при анализе процессов дифракции: рентгено-вских лучей нейтронов и электронов в кристаллах с использо-ванием обратного пространства (обратная решетка) и т. п.
При образовании симметрии пространство не деформирует-ся, а преобразуется как жесткое целое. Такие преобразования называют ортогональными, или изотермическими. Совокуп-ность операций симметрии данного кристалла образует группу симметрии в смысле математической теории групп.
Зная группу симметрии кристаллов, можно указать возмож-ность наличия или отсутствия в ней некоторых физических свойств, чем и занимается кристаллофизика.
В основе определения симметрии лежит понятие равенства при преобразовании. Однако физически (и математически) объект может быть равен себе по одним признакам и не равен по другим. Например, распределение ядер и электронов в крис-талле антиферромагнетика можно описать с помощью обычной пространственной симметрии, но если учесть распределение в нем магнитных моментов, то обычной, классической симмет-рии уже недостаточно. К подобного рода обобщениям симмет-рии относятся антисимметрия и цветная симметрия. В антисимметрии в дополнение к трем пространственным пере-менным добавляется четвертая ±1, что можно истолковать как изменение знака (антиравна). Это так называемая обобщенная симметрия, используемая в описании, например, магнитных структур.
Другое обобщение симметрии -- симметрия подобия -- бу-дет определено, когда равенство частей фигуры заменяется их подобием , криволинейная симметрия, статисти-ческая симметрия, вводимая при описании структуры разупорядоченных кристаллов, твердых растворов, жидких кристаллов и т. п.
В физике элементарных частиц симметрия широко исполь-зуется в связи с идеей изотопической инвариантности, предло-женной В. Гейзенбергом для описания взаимодействий протона и нейтрона. Считается, что изотопическая симметрия описы-вает точное свойство инвариантности сильных взаимодействий, хотя получаемые из нее соотношения в действительности все-гда нарушаются на уровне точности порядка нескольких про-центов.
Унитарная симметрия в качестве обобщения изотопичес-кой инвариантности впервые появилась в связи с моделью сим-метрии Сакаты, в которой все адроны считались составленными из трех основных электрических частиц -- протона, нейтрона и d-гиперона.
Унитарная симметрия осуществляется с худшей точностью, чем изотопическая, но это не мешает получать ряд интересных соотношения между физическими величинами (например, фор-мула масс Гелл-Манна--Окубо, предсказавшая существование и массу Q-гиперона).
Еще одно приложение группы симметрии к физике адронов -- это цветовая симметрия. Согласно определению цвето-вой симметрии каждый кварк имеет три возможных состояния, различающихся по квантовому числу, названному цветом, а пре-образование цветового состояния можно производить незави-симо в разных пространственно-временных точках. С этим связано существование глюонного поля, имеющего восемь цве-товых состояний. Взаимодействие кварков с этим полем явля-ется микроскопической основой сильных взаимодействий. Оно описывается квантовой хромодинамикой -- калибровочной квантовой теорией поля типа Янга--Миллса. Кроме того, цве-товая симметрия не нарушается никакими известными в насто-ящее время взаимодействиями, а согласно теореме Нетер следует, что в стандартной модели сильного и электрослабого взаимодействий возникает сохранение барионного и лептонно-го чисел.
2. Законы сохранения

Количество законов Природы велико, но они неравнозначны по сфере применения.
Наиболее многочисленны законы, описывающие электричес-кие явления, сформулированные на основе обобщения экспе-риментальных данных. Часто они носят приближенный характер, и область их применения достаточно узка. Например, закон Гука -- для области небольших деформаций, то есть до дости-жения предела текучести твердого тела, иначе до границы, пос-ле которой деформации становятся необратимыми после снятия нагрузки. Закон Гука выражает внешний наблюдаемый эффект. Внутренняя же природа явления в том, что атомы и молекулы состоят из электрически заряженных частиц, силы притяжения и отталкивания в которых уравновешены. Деформация наруша-ет их внутренние электрическое равновесие, которое после сня-тия нагрузки восстанавливается. Таким образом, силы упругости по сути электромагнитные силы или по существу чисто элект-рический эффект; закон валентности при образовании химичес-ких соединений определяет создание общих электронных пар, то есть внутренне это тоже электрический эффект.
Однако для описания внешнего поведения системы вполне можно не прибегать к сложным уравнениям электродинамики. Аналогично в термодинамике или химических законах не рас-сматривают квантовые внутренние эффекты, объясняющие по-ведение термодинамической или химической системы изнутри.
Такие законы являются частными.
Если же мы абстрагируемся от внешнего эффекта и раскро-ем его внутренний механизм, то целый ряд на первый взгляд не связанных явлений объединится в классы или системы. Эти системы явлений можно будет описать единым законом, назы-ваемым фундаментальным.
В классической механике их четыре: законы Ньютона и все-мирного тяготения. Но и они действуют лишь в области макро-мира. Так, для микрочастиц невозможно указать точно значения ускорений и сил, то есть теряется сам смысл понятий, исполь-зуемых в формулировке закона.
Другое дело законы сохранения. Они не теряют своего смыс-ла при замене одной системы на другую, то есть базируются на эвристическом принципе, позволяющем независимо от накоп-ленного опыта отбирать более совершенные законы. Они могут и не давать полного описания явлений, а лишь накладывать оп-ределенные запреты на их реализацию для построения новых теорий. Тогда их называют принципами.
Если и дальше обобщать фундаментальные законы, еще глуб-же уходя во внутреннюю структуру: от атома к элементарным частицам, а затем и к их структуре, и на базе этого строить тео-рии и выводить законы, то последние и будут называться уни-версальными. Например, теория Великого объединения взаимодействий пытается объединить четыре известных взаи-модействия, то есть свести их к одной Природе. Для таких зако-нов характерен элемент симметрии. В первом приближении под симметрией понимают допущение любых преобразований сис-темы, а структура математической формулировки закона при этом не меняется. Чтобы понять, что такое симметрия физичес-кого закона, нужно дать этому определение в математических терминах. Для исследования симметрии предметов необходи-мо рассмотреть множество всех перемещений пространства и выделить те из них, при которых данный предмет отоб и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.