На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Понятие и суть биологического разнообразия. Обзор проблемы контроля и сохранения биологического разнообразия биосферы. Отрицательное влияние человека на биосферу. Экономическая оценка вклада природных экосистем в глобальную биосферную устойчивость.

Информация:

Тип работы: Курсовик. Предмет: Биология. Добавлен: 24.11.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):




Содержание
    Введение 2
    1. Обзор проблемы контроля и сохранения биологического разнообразия биосферы 3
    2. Отрицательное влияние человека на биосферу 18
    3. Экономическая оценка вклада природных экосистем в глобальную биосферную устойчивость 24
    Заключение 28
    Литература 29
Введение
    Биологическое разнообразие - совокупность всех биологических видов и биотических сообществ, сформированных и формирующихся в разных средах обитания (наземных, почвенных, морских, пресноводных). Это - основа поддержания жизнеобеспечивающих функций биосферы и существования человека. Национальные и глобальные проблемы сохранения биоразнообразия не могут быть реализованы без фундаментальных исследований в этой области. Россия с ее обширной территорией, на которой сохраняется основное разнообразие экосистем и видового разнообразия Северной Евразии, нуждается в развитии специальных исследований, направленных на инвентаризацию, оценку состояния биоразнообразия, развитие системы его мониторинга, а также на разработку принципов и методов сохранения природных биосистем.
    1. Обзор проблемы контроля и сохранения биологического разнообразия биосферы
К первым документам, поставившим на научную основу проблему БР, относится Всемирная Стратегия Охраны Природы (1980-1991) (1991), сформулировавшей стратегические цели и задачи сохранения БР и генресурсов. После первой по значимости цели - сохранения жизнеобеспечивающих систем (воздуха, вод, лесов и почв) было поставлено сохранение БР и генресурсов планеты. Разумеется, в ней указаны и леса мира, включая и их БР. В документе дана классификация степеней очередности (9) спасения угрожаемых видов (3 по 3 сочетаний: вид-род-семейство х редкий-уязвимый-угрожаемый). В ней же дан трехуровневый «айсберг» управления генресурсами мира: 1) его вершина - защита вне среды - ex situ, 2) защита в резерватах - in situ (больше первой), 3) защита повсеместно (огромная подводная часть). В ней же даны и типы концентрации генресурсов, особо выделяя исключительно высокое БР горных экосистем.
«Обзор МАБ 9» представляет краткое содержание ключевых проблем по выявлению БР и его функциональному значению, внося вклад в планирование программ по исследованию функции БР в экосистемах международным Союзом Биологических Наук, Научным Комитетом по Проблемам Окружающей среды и ЮНЕСКО. Его корни лежат в симпозиуме по функциям БР экосистем, созванного с первыми двумя организациями (Вашингтон, 1989), на котором предложены направления: 1) роль биотического и ландшафтного разнообразия в функциональных свойствах и их ответе за изменения; 2) глобальная сравнительная биогеография; 3) контроль БР как индикатора изменений; 4) ускоренные программы по сохранению генетических ресурсов диких видов.
Сообщение Вашингтонской рабочей группы обосновало неофициальное соглашение среди трех организаций по совместной разработке экосистемных функций БР. В июне 1990 г. в университете штата Мэриленд, были представлены планы 4-му Международному конгрессу систематики и эволюционной биологии. В том же году, в ноябре, они были исследованы и международным Советом по координации в МАВ, приветствовавшей предложение программы IUBS/SСОРЕ/UNESСО, концентрирующейся на глобальной сравнительной биогеографии, исследовании и долгосрочном контроле БР как индикаторе глобального изменения. Эти планы должны быть развиты в течение 1991 г., в рабочем комитете в «Гарвардском лесу» в июне, на симпозиуме, намеченном в Бейруте в октябре, и на конференции по контролю биоразнообразия в бывшем СССР в октябре. Среди целей этого ряда встреч - детальная экспертиза гипотез, отраженных в существующем обзоре и оценке путей и средств, которыми они могли бы быть проверены.
    Обзор предназначен для во влеченных в другие международные инициативы по БР, включая работу по программам 1991-93 гг. IUCN, UNEP - процесс по разработке международного Соглашения по биологическому разнообразию и обсуждению его в процессе подготовки к Конференции ООН по окружающей среде и развитию (Рио-де-Жанейро, 1992). В Рио была принята Конвенция о биологическом разнообразии, ратифицированная многими странами (включая Россию), что послужило толчком для выработки национальных программ по защите БР и устойчивому экономическому развитию (включая и РФ). На фоне огромного научно-информационного потока в мировом сообществе отсутствие достижений другой его составляющей западного сообщества, например, монографии М. Розенцвейга (1995-2002), представляется досадным недоразумением, тем более, что ее первые издания уже тогда носили характер фундаментального обзора. Важнейшие результаты его следующие за меру измерения БР принимается - Шеннон-Виннеровский индекс, анализируется связь разнообразия со сложностью экосистем, их стабильностью, продуктивностью.
    Рассматривается гипотеза Гайя (Gaia) об отношении разнообразия к характеристикам физической среды: к атмосфере и почве (о связях их параметров со свойствами выветривающейся литосферы, климатом и биотой: почва как продукт деятельности биоты). С проблемой отбора связана дилемма: если отбирается генное соответствие среде, тогда взаимодействия с вышележащими иерархическими уровнями системы - вторичны.
    Сторонники ее считают, что полная биота ведет себя как гигантская система с жесткой обратной связью относительно среды. Поэтому они признают ее роль в определении состава атмосферы, свойств поверхностных слоев литосферы, полагая, что ее действия будут вести к торможению любого внешнего возмущения и - что сложность создает гомеостаз на более низких уровнях организации и совсем не обязательно - на высоких.
    Относительно затрагивания биотой параметров атмосферы, сильные выводы сделаны по окаменелостям, наблюдениям атмосферы других планет и матмоделям. Ожидаемое кибернетическое поведение биосферы менее ясно. Не полностью ясно, как биоразнообразие затрагивает отношения биота - атмосфера, биота - литосфера. Виды затрагивают атмосферу и биосферу как индивиды, или они отвечают целостно как системы? Ответ на него центральный для биоразнообразия. На основе синтеза известных концепций эволюции структур БР предложена серия аксиом и гипотез по трем уровням БР: молекулярно-клеточному, организменно- популяционному и экосистемному.
    Остановимся на гипотезах 2-го и 3-го блоков, а из первого, приведем лишь одну, на наш взгляд, тривиальную (гипотезу - 1-1): Разнообразие - фундаментальная особенность жизни, и без нее эволюционные изменения невозможны.
    Аксиома 2.1: Люди - основной источник возмущения. Аксиома не бесспорна, человек может сохранять и обогащать БР. Доказательства: Дарвин (1959) и вся культурная и одомашненная флора и фауна, в последнее время и восстановление редких видов.
    Гипотеза 2.1: Надвидовая изменчивость - исключительно результат действия естественного отбора и изоляции на основе генетической и клеточной изменчивости. В этой гипотезе не учитываются достижения в области исследования макроэволюции (эволюции надвидовых таксонов) и биологии развития, которыми доказана несводимость закономерностей микроэволюции к таковым макроэволюции.
    Гипотеза 2.2: Разнообразие видов увеличивается нелинейно с повышением качества и количества ресурсов в окружающей среде. БР увеличивается в связи с разнообразием среды обитания и количеством ресурсов.
    Гипотеза 2.3:Пространственно-временная разнородность увеличивает биоразнообразие. Двумя этими гипотезами авторы пытаются разграничить повышение биоразнообразия ресурсными и средовыми факторами, однако на этих примерах (2.2 - свет, вода и питательные вещества) и (2.3 - температура, субстрат) видно, что разграничить ресурсы и факторы среды (вода, субстрат - почва) практически невозможно, поэтому эти гипотезы трудно понимаются, как, впрочем, и последующие. Трактовка их неоднозначна и некорректна из-за нечетких определений. Поскольку, гипотеза 2.3 дублирует выводы более солидно аргументированной монографии М.Л. Розенцвейга - целесообразно акцентировать внимания на результатах этого последнего исследования.
    Гипотеза 2.4: Так как возмущения на ресурсные уровни и средовую разнородность не линейны, низкие уровни возмущения увеличивают разнообразие видов, но по достижению некоторой величины, рост возмущения уменьшает БР. По-видимому, есть порог воздействия, выше которого изменения в развитии системы, катастрофичны.
    Гипотеза 2.5: Повышенная возмущенность благоприятствует видам с короткими жизненными циклами. После катастроф свободные экотопы захватывают виды r-стратеги.
    Гипотеза 2.6: Виды с долгими поколениями и/или большими территориями имеют больший риск вымереть, и наоборот. Древесные виды и долгоживущие позвоночные животные наиболее уязвимы (деревья тропических лесов, панды, носороги и киты), а также лишайники, которые являются лучшими индикаторами лесов с длинной историей в тропиках и в умеренной зоне: Гипотеза Гайя, предсказывает такой результат, рассматривая его как регулирующий ответ биосферы.
    Гипотеза 2.9: Существует минимальный размер жизнеспособной популяция, поддерживающий ее геномное разнообразие. Он специфичен из-за особенностей видов.
    Минимальный размер определен системой скрещивания, продолжительностью жизни и толерантностью к аутбридингу. Облигатные аутбредные виды несут больше летальных генов при гомозиготности больше минимального уровня, в отличие от обычных панмиктических или апомиктических видов растений.
    Аналогичны гипотезы экосистемного уровня.
Гипотеза 3.1: Разнообразие на экосистемном уровне - следствие иерархии в биоте.
Гипотеза 3.2: Уровень разнообразия экосистемы - результант многих факторов, включая историю, климат, почвы.
    Гипотеза 3.6: Разнообразие ландшафтных единиц, т.е. типов сукцессии и категорий растительности, необходимо для эффективного функционирования экосистемы.
    Гипотеза 3.7: Чем выше разнообразие экосистемы, тем более зависимы виды от него самого, т. к. в этом случае более узка экологическая ниша отдельных видов.
    Это говорит о том, что чем более разнообразна система, тем больше потеря разнообразия будет ее затрагивать. Например, экосистемы умеренной зоны со средним разнообразием, могут противостоять потере даже важных видов как американский каштан в восточном лиственном лесу США, без ухудшения их функции, в то время как суперразнообразные тропические системы этого не могут. Гипотеза не вполне согласуется с гипотезой 2.6. Трудно согласиться, что смена доминирования каштана зубчатого на другие виды, не изменила функций экосистемы, хотя бы потому, что нет в этой зоне равного ему по продуктивности вида, на котором обитает более тысячи разнообразных консументов и ими формируется адекватное число консорций, не говоря уж о человеке, спасающегоcя благдаря ему в голодные годы. Примеров долгоживущих видов много, а каштан зубчатый развивался в сообществах с высоким уровнем видового разнообразия в Северной Америке, как и каштан посевной на Кавказе, тис ягодный в Европе и на других континентах, как и виды самшита. Для обеих Америк, Азии, Африки и Австралии насчитываются сотни долгожителей - древесных видов.
    Гипотеза 3.8: Богатство видов любой области - результат баланса притока (иммиграцией и местным видообразованиием) и оттока видов (эмиграцией и вымиранием).
    Это подразумевает, что нет никаких теоретических верхних пределов числу видов в экосистеме. Поступление и исчезновение видов нелинейны во времени.
    Для понимания видового богатства на любом участке, должны быть поняты процессы иммиграции, видообразования, эмиграции и вымирания, приток и отток видов, причем они имеет не обязательно независимые функции. Наблюдения явно показывают, что различные экосистемы обладают различными уровнями богатства видов. Не ясно, вытекают ли эти различия из-за некоторого характерного несходства в емкости экосистем, или они являются следствием вариаций в скоростях поступления и исчезновения.
    Гипотеза 3.9: Экосистемы проявляют уровень БР на несколько порядков величины выше, чем это требуемо для эффективной трофической функции. Эта гипотеза является критической для объективной оценки экологической роли БР. Если есть большая функциональная избыточность из-за длинной истории естественного возмущения и ландшафтной фрагментации, то нет никакой непосредственной опасности для целостности экосистемы от антропогенной деятельности, снижающей БР до определенного уровня, если опасность не затрагивает доминантов-эдификаторов. Но если каждый вид уникален и выполняет исключительную функцию, не разделенную другими, то человек вызывает нарушение, могущее иметь бедственные последствия.
    Справедливость этой гипотезы подвергнута сомнению. Полный критический обзор этого тезиса необходим. Он должен иметь высокий приоритет в любой программе по БР.
    На серию методологических гипотез исторически параллельно формируется другое направление методологических решений (ответов), не адекватных первой, а скорее, глубже раскрывающих суть проблем, так как выражают результаты более широких и глубоких выводов. Наиболее полно оно выражено в фундаментальной сводке - квинтэссенции массива эмпирических обобщений: от данных полевой и экспериментальной экологии до палеонтологических выводов по широкому спектру таксонов, практически по всем материкам и океанам. В рамках статьи приведем лишь верхушку айсберга как призмы фундаментальных закономерностей, сквозь которую необходимо рассмотреть и специфику биоразнообразия горных лесных экосистем.
    Прежде всего, в работе вскрывается «ошеломляющее видовое разнообразие в истребляемых человеком тропических лесах мира», обреченное на гибель, так и не будучи выявленных консументов (подавляющее число - членистоногие - 40-100 млн. видов). По сути, в сводке реализованы цели глобальной стратегии охраны природных уникумов на основе выявления концентрации таксономического и экосистемного разнообразия, возникшего на основе ландшафтно-географического многообразия. Выдвинута задача определения первостепенных целей спасения биоразнообразия, к которым по праву относятся очаги наиболее богатых формами жизни и наиболее древних его рефугиумов.
    Как наиболее населенные, они становятся самыми горячими точками гибели биоты и разрушения ландшафта. Особенно четко это просматривается на карте состояния БР экосистем Средиземноморского побережья.
    Наиболее известный образец формализации БР - кривая: виды-площадь (прямая в "1оg-1оg пространстве") на самом деле состоит из 4-х образцов разного масштаба пространства и времени: 1) урочище, 2) экосистема (биогеоценоз), 3) континент (острова, флоры географических стран) и 4) зональные биомы. Наборы островов при объединении дают более крутые кривые площадь-виды, чем сухопутные объединяемые образцы той же биогеографической провинции.
    Параметр с (наклон прямой в билогарифмических координатах) из уравнения S=сА z в биоме субтропиков имеет наибольшее значение, а в высокогорном биоме пуна (Анды) - наименьшее. (где S-число видов на участке, A-площадь участка, c-const). Неизменно межархипелаговое z превышает материковое. Параметр z не зависит от используемых единиц и значения логарифмического основания, а параметр с зависит.
    Другой известный образец изменения БР - широтный, очень древний, формировался десятки-сотни милл. лет. Его примеры-образцы прослежены и в окаменелостях, благодаря умению геологов оценивать широту местности по направлению их остаточной намагниченности. Чем ближе к экватору архипелаг, тем больше z его островов.
    Установлено, что лес неотропиков в 5 раз богаче африканского. Приблизительно 35000 видов цветковых обитают в тропической Азии и Океании, что соответствует «с» - значению в два раза большему, чем в южной Африке (Капское царство). Разнообразие птиц в тропическом лесу Америки в 4-5 раз превышает таковое в умеренном.
    Разнообразие местообитания прямо определяет разнообразие его населения. Для птиц и других позвоночных, такая зависимость - не абсолютна. Возмущения также определяет уровень БР. Чем чаще в одном месте возмущения, тем меньше в нем будет видов. Это подтверждается наблюдениями и экспериментами на коралловых рифах и островках. Так разнообразие моллюсков на валунах максимально на промежуточном уровне мало-масштабного возмущения.
    Связь объема БР с продуктивностью также не однозначна. В маломасштабных экспериментах (на участках от 1 м 2 до 1 га) внесение удобрений приводит к снижению БР. То же, отмечено при загрязнении и в водных экосистемах. В более крупных, относительно не нарушенных регионах большее разнообразие сопровождалось более высокой продуктивностью. Затем по ряду групп млекопитающих (грызуны, плотоядные, австралийские тропические виды, у растений на двух континентах, средиземноморские растения) кривая имеет пик разнообразия при промежуточной продуктивности (унимодальная форма). Однако для растений эта модель остается проблематичной, а у древесных США разнообразие не теряется при более высокой продуктивности.
    Главные унимодальные образцы изменения БР исходят из горных тропиков. (Так у мхов и папоротников максимум БР на средних высотах). Тропический средневысотный «пик» отмечен и для ряда таксонов животных. Такая же зависимость установлена у многих морских организмов (десятиногих, кумовых раков, гастропод, рыб, иглокожих, полихет, протобранхий). Однако, как и в широтном образце, имеются исключения.
    Установленный Н.Н. Воронцовым и Ляпуновой феномен интенсивного видообразования у млекопитающих (роды Elliobus, Mus) в сейсмически активных зонах стимулирует дальнейший интерес к работе с биотой в таких местообитаниях, в которых, как правило, и повышена концентрация этносов. С аналогичным явлением ассоциируются Курская магнитная и одноименная ботаническая аномалии. Повышенное разнообразие насекомых отмечено в зонах интрогрессивной гибридизации деревьев. Гибриды поддерживают в 2 раза большее насекомых и патогенных грибов.
    Образцы разнообразия во времени укладываются на оси временной шкалы, простирающейся от одного года до сотен миллионов лет. Изучение растительных окаменелостей, останков морских беспозвоночных указывает на рост БР в ходе эволюции.
    При этом в течении каждого миллиона лет заменяется приблизительно 20-25% всех видов. Но у некоторых таксонов в стабильной (морской) среде на протяжении 1 млн. лет разнообразие может и не меняться вообще. Для паразитических консорций важен эволюционный возраст хозяина.
    Малочисленность паразитов у древесных видов в Великобритании свидетельствует о недавнем появлении деревьев на острове после отступления последнего ледника. В целом образец «возраст хозяина» работает только в относительно короткие периоды в довольно неестественных обстоятельствах. Когда же колонисты-хозяева набирают всю гамму паразитов этот образец исчезает.
    В ходе восстановительных сукцессии БР растет. Зарастания заброшенных участков в Пъедмонте (США) за 200 лет показало рост БР в первые 100 лет и, затем, его выравнивание. Зарастание вырубок сопровождается заселением их травами, что увеличивает БР, которые позже замещаются кустарниками и деревьями,что уменьшает БР.
    Отловы бабочек в стационарные световые ловушки в Канаде (в течении 22 лет) и в Англии показывают, что кривые «время-виды» существуют, но возможно они не имеют тех же самых значений коэффициента как и кривые «площадь-виды».
    В холодном климате сезонное варьирование БР определено спячкой беспозвоночных и холоднокровных позвоночных, перелетами птиц и даже насекомых. В тропических и субтропических горах сезонные перемещения проявляются в виде вертикальных миграций. Субтропические регионы часто обмениваются видами летом и зимой.
    Помимо пространства и времени на БР влияют и другие, так называемые, второстепенные параметры: 1) размер тела (в пределах таксона больше видов промежуточного размера), 2) специфика трофических сетей и цепей.
    Неразмерные образцы БР не прямо связаны с местом и временем, а зависят от трофического уровня. Чем он выше, тем меньше видов его используют. Из проанализированных 92 сетей только 3 (все морские) имели шесть уровней. Среди наземных сетей в этом плане выделяются с участием галлообразователей. Из четырех таких сетевых сообществ, два имело 6 уровней, одно - 7 и одно - 8. Виды высшего уровня в таких сетях получают корм от многих более низких.
    Соотношение видов в комплексах хищник-жертва, в сетях насекомых, кажутся постоянными, несмотря на изменяющееся разнообразие. Анализ соотношений «типов» хищников линейно соответствует числу «типов» жертв (это правило Кохена, где тип - не вид, он может быть стадией жизненного цикла этого вида или собранием видов со сходной морфологией и тактикой избегания).
    Имеются три основных формы видообразования: 1) географическое, 2) полиплоидизация и 3) конкурентное. В основе географического (аллопатрического) - лежит образование барьеров. Скорость его формирования зависит от: 1) географических обстоятельств и 2) размера ареалов видов. Географические обстоятельства - наличие географических преград. Классические примеры Гавайи и о. Байкал.
    Чем больше ареал, тем выше вероятность его расчленения. Барьеры бывают двух видов: «ножи» и «рвы». Вероятность расчленения ареала зависит от формы ареала, формы и длины барьера. Ареал промежуточного размера, по результатам моделирования, наиболее вероятно может быть разделен, потому что итоговая вероятность вытекает из умножения вероятностей, из которых одна - увеличивается с 0, другая - падает до 0. На скорость дивергенции видов, помимо размера популяции (мелкие более консервативные), обратное влияние оказывает время генераций. Короче поколения - выше разнообразие. Конкурентное видообразование, по-видимому, наиболее распространенное. Различные способы видообразования дают и различные предсказания. и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.