На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Вариационное исчисление

Информация:

Тип работы: Реферат. Добавлен: 21.02.2012. Страниц: 44. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание.

Глава 1. ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ 3
1.1. Понятие функционала и оператора 3
1.2. Задачи, приводящие к экстремуму функционала 4
1.2.1. Задача о брахистохроне 4
1.2.2. Задача о наибольшей площади 5
1.3. Постановка задачи вариационного исчисления 5
1.4. Первая вариация и градиент функционала 6
1.5. Необходимое условие минимума функционала 8
1.6. Уравнение Эйлера. Связь между вариационной и краевой задачами 8
1.7. Пути решения вариационных задач 9
1.8. Вторая вариация функционала. Достаточное условие минимума функционала 11
1.9. Изопериметрическая задача 14
1.10. Минимизирующая последовательность 16
1.11. Функционал от функций, нескольких независимых переменных 17
1.12. Функционал от функций, имеющих производные высших порядков 18
1.13. Функционалы, зависящие от нескольких функций 20
Глава 2. ВАРИАЦИОННЫЕ ЗАДАЧИ С ПОДВИЖНЫМИ ГРАНИЦАМИ. 22
2.1. Простейшая задача с подвижными границами 22
2.2. Условие трансверсальности 23
2.3. Задача с подвижными границами для функционалов от нескольких функций 26
Примеры 29
Список используемой литературы 31
Глава 1. ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ
1.1. Понятие функционала и оператора
В курсе высшей математики вводилось понятие функции. Если некоторому числу x из области D ставится в соответствие по определенному правилу или закону число y, то говорят, что задана функция y = f(x). Область D называют областью определения функции f(x).
Если же функции y(x) ставится в соответствие по определенному правилу или закону число J, то говорят, что задан функционал J = J(y). Примером функционала может быть определенный интеграл от функции y(x) или от некоторого выражения, зависящего от y(x),



Если теперь функции y(x) ставится в соответствие по определенному правилу или закону вновь функция z(x), то говорят, что задан оператор z = L(y), или z = Ly.
Примерами дифференциальных операторов могут служить:

Дадим более строгое определение функционала. Пусть A - множество элементов произвольной природы, и пусть каждому элементу u є A приведено в соответствие одно и только одно число J(u). В этом случае говорят, что на множестве A задан функционал J. Множество A называется областью определения функционала J и обозначается через D(J); число J(u) называется значением функционала J на элементе u. Функционал J называется вещественным, если все его значения вещественны. Функционал J называется линейным, если его область определения есть линейное множество и если
J(?u + ?v) = ?J(u) + ?J(v).

1.2. Задачи, приводящие к экстремуму функционала
Рис. 1.1
1.2.1. Задача о брахистохроне
Зарождение вариационного исчисления относят обычно к 1696 г., когда И. Бернулли поставил так называемую задачу о брахистохроне: точки А(0,0) и В(а,b) расположены в вертикальной плоскости (xy) (рис. 1). Какова должна быть кривая, лежащая в плоскости (xy) и соединяющая точки А и В, чтобы материальная точка, двигаясь без трения, скатывалась по этой кривой из точки А в точку В в кратчайшее время?
Искомая кривая и была названа брахистохроной.

Пусть уравнение кривой АВ есть y = u(x). Рассмотрим некоторый момент времени t, и пусть в этот момент движущаяся точка находится на расстоянии y от оси x. Тогда , где v - скорость движущейся точки, g - ускорение силы тяжести. В то же время

Отсюда
.
Обозначим через Т время, в течение которого материальная точка достигает точки В. Интегрируя, находим
(1.1)
Задача сводится к следующему: надо найти функцию y = u(x), удовлетворяющую условию
u(0) = 0; u(а) = b (1.2)
и сообщающую интегралу (1.1) наименьшее значение. Условия (1.2) означают, что искомая кривая должна проходить через заданные точки А и В. Такого типа условия принято называть граничными, или краевыми, так как они относятся к концам промежутка, на котором должна быть определена искомая функция.
Примером применения кривой в виде брахистохроны служит образующая цилиндрических поверхностей, используемых на детских площадках, в аттракционах для спуска с возвышения, на трамплинах.

1.2.2. Задача о наибольшей площади
Сформулируем эту задачу так: среди всех плоских кривых, имеющих данную длину и оканчивающихся в точках А(а,0) и В(b,0), найти кривую, ограничивающую вместе с отрезком [а,b] оси x область с наибольшей площадью.
Пусть уравнение кривой будет y = u(x). Задача заключается в том, чтобы найти функцию u(x), удовлетворяющую краевым условиям
u(а) = u(b) = 0 (1.3)
и тождеству
(1.4)
и сообщающую интегралу
(1.5)
наибольшее значение.
Общим для рассмотренных задач является то, что каждый раз ищется функция, удовлетворяющая тем или иным поставленным условиям и сообщающая экстремальное значение заданному функционалу.
Приведенные здесь задачи относятся к ветви математического анализа, называемой вариационным исчислением.

1.3. Постановка задачи вариационного исчисления
Задача вариационного исчисления состоит в следующем: дан функционал J с областью определения D(J); требуется найти элемент u0 є D(J), сообщающий функционалу либо минимальное значение
, (1.6)
либо максимальное значение
. (1.7)
Задача о максимуме функционала J тождественна с задачей о минимуме функционала -J, поэтому в дальнейшем будем рассматривать только задачу о минимуме функционала J.
В приведенной общей формулировке задачу вариационного исчисления решить вряд ли возможно, поэтому наложим на функционал J некоторые ограничения.
Будем считать, что D(J) есть часть некоторого пространства Х. Чтобы сформулировать дальнейшие ограничения, введем понятие линейного многообразия. Пусть М - линейное множество элементов пространства Х и u - некоторый фиксированный элемент этого пространства. Линейным многообразием в пространстве Х назовем совокупность элементов, каждый из которых можно представить в виде

u = u + ?, ?єМ. (1.8)

Если uєМ, то, очевидно, так определенное линейное многообразие совпадает с М.
Требование 1. Область определения D(J) функционала J есть линейное многообразие.
Будем считать также, что пространство Х бесконечномерно. Тогда в Х линейное множество М также бесконечномерно и, следовательно, из него можно выделить конечномерное подпространство.
Требование 2. Если ? пробегает любое конечномерное подпространство, содержащееся в М, то на этом подпространстве функционал J(u) = J(u + ?) непрерывно дифференцируем достаточное число раз.
Введем понятие об абсолютном и относительном минимуме функционала. Функционал J достигает на элементе u0 є D(J) абсолютного минимума, если неравенство
J(u0) = J(u) (1.9)
Справедливо для любого элемента u є D(J). Тот же функционал достигает на элементе u0 относительного минимума, если неравенство (9) справедливо для элементов u є D(J), до...
**************************************************************


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.