На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Разработка системы управления механизмом зажигания

Информация:

Тип работы: Диплом. Добавлен: 10.03.2012. Страниц: 61. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Аннотация

В данном дипломном проекте проводится разработка системы управления механизмом зажигания. В общей части рассматриваются принципы построения систем управления на микроконтроллерах.
В специальной части приведены разработка структурной и принципиальной схемы устройства, анализ семейств микроконтроллеров, разработка программного обеспечения для микроконтроллера и выполнен расчет надежности устройства.
В разделе организация производства представлены виды технической документации, необходимые при производстве радиоэлектронной аппаратуры и маршрутная карта технологического процесса на производство печатных плат.
В экономической части выполнен расчет себестоимости производства проектируемого устройства и проведен анализ потребительского спроса на рынке.
В разделе техники безопасности перечислены правила техники безопасности, соблюдение которых необходимо при проведении электромонтажных работ.


Содержание
Введение………………………………………………………………….с
1 Системы управления на микроконтроллерах.
1.1 Применение микроконтроллеров в современной промышленности…………………………………………………………………………. с
1.2 Принципы построения систем управления на микроконтроллерах………………………………………………………………………..с
2 Разработка системы управления механизмом зажигания.
2.1 Постановка задачи………………………………………………….с
2.2 Разработка структурной схемы………………………………...с
2.3 Разработка принципиальной схемы……………………………..с
2.4 Выбор элементов принципиальной схемы……………………..с
2.5 Разработка программного обеспечения………………………..с
2.6 Расчет надежности…………………………………………………с
3 Организация производства.
3.1 Виды конструкторско - технологической документации при производстве электронных устройств…………………………….с
3.2 Маршрутная карта технологического процесса при изготовлении печатной платы…………………………………………………с
4 Экономическая часть.
4.1 Расчет себестоимости изготовления устройства………...с
5 Мероприятия по технике безопасности и противопожарной технике.
5.1 Меры безопасности при производстве электромонтажных работ…………………………………………………………………………..с
Заключение……………………………………………………………..с
Список литературы………………………………………………….с
Приложение А Текст программы микроконтроллера…………с
Приложение В Маршрутная карта………………………………..с
Перечень элементов.


Микропроцессорные технологии уже давно вышли за рамки персональных компьютеров и супер-ЭВМ. Во всем мире широкое распространение получили микроконтроллеры, как в автоматизированных системах управления, так и в бытовых электроприборах, так как они отличаются надежностью, высокой степенью интеграции и небольшой стоимостью.
В данном дипломном проекте я планирую рассмотреть возможность применения микроконтроллеров в системах зажигания двигателей внутреннего сгорания. А так же описать этапы разработки этой системы зажигания и привести необходимую документацию для организации производства устройства, либо его изготовления в условиях малого предприятия.


1 СИСТЕМЫ УПРАВЛЕНИЯ НА МИКРОКОНТРОЛЛЕРАХ.
1.1 Применение микроконтроллеров в современной промышленности.
Микроконтроллеры являются наиболее массовыми представителями микропроцессорной электроники. Интегрируя в одном корпусе микросхемы высокопроизводительный процессор, оперативную и постоянную память, а также набор периферийных устройств, микроконтроллеры позволяют с минимальными затратами реализовать широкую номенклатуру систем управления различными объектами и процессами.
Структурная организация, набор команд и аппаратурно-программные средства ввода/вывода информации микроконтроллеров лучше всего приспособлены для решения задач управления и регулирования в приборах, устройствах и системах автоматики, а не для решения задач обработки данных. Микроконтроллеры не являются классическими электронно-вычислительными машинами, так как физическая и логическая разделённость памяти программ и памяти данных исключает возможность модификации или замены (перезагрузки) прикладных программ микроконтроллеров во время работы, что сильно затрудняет их использование в качестве универсальных средств обработки данных.
Поэтому микроконтроллеры находят широкое применение в промышленной автоматике, контрольно - измерительной технике, аппаратуре связи, бытовой технике и многих других областях человеческой деятельности.

1.2 Принципы построения систем управления на микроконтроллерах.
В устройствах управления объектами (контроллерах) на основе микроконтроллеров аппаратурные средства и программное обеспечение существуют в форме неделимого аппаратурно - программного комплекса. При проектировании контроллеров приходится решать одну из самых сложных задач разработки, а именно задачу оптимального распределения функций контроллера между аппаратурными средствами и программным обеспечением. Решение этой задачи осложняется тем, что взаимосвязь и взаимовлияние аппаратурных средств и программного обеспечения в микропроцессорной технике претерпевают динамичные изменения. Если в начале развития микропроцессорной техники определяющим было правило, в соответствии с которым аппаратурные средства обеспечивают производительность, а программное обеспечение - дешевизну изделия, то в настоящее время это правило нуждается в серьезной корректировке. Так как микроконтроллер представляет собой стандартный массовый (относительно недорогой) логический блок, конкретное назначение которого определяет пользователь с помощью программного обеспечения, то с ростом степени интеграции и, следовательно, функционально-логических возможностей микроконтроллера резко понижается стоимость изделия в пересчете на выполняемую функцию, что в конечном итоге и обеспечивает достижение высоких технико-экономических показателей изделий на микроконтроллере. При этом затраты на разработку программного обеспечения изделия в 2-10 раз превышают (за время жизни изделия) затраты на приобретение и изготовление аппаратурных средств.
В настоящее время наибольшее распространение получил методологический прием, при котором весь цикл разработки контроллеров рассматривается как последовательность трех фаз проектирования:
1. анализа задачи и выбора аппаратурных средств контроллера;
2. разработки прикладного программного обеспечения;
3. комплексирования аппаратурных средств и программного обеспе¬чения в прототипе контроллера и его отладки.
Фаза разработки программного обеспечения, т.е. фаза получения прикладных программ, в свою очередь, разбивается на два существенно различных этапа:
1. "от постановки задачи к исходной программе";
2. "от исходной программы к объектному модулю".
Этап разработки "от исходной программы к объектному модулю" имеет целью получение машинных кодов прикладных программ, работающих в микроконтроллере. Этот этап разработки прикладного программного обеспечения легко поддается формализации и поддержан всей мощью системного программного обеспечения микроконтроллера, направленного на автоматизацию процесса получения прикладных программ. В состав средств системного программного обеспечения входят трансляторы с различных алгоритмических языков высокого уровня, ассемблеры, редакторы текстов, программы-отладчики, программы - документаторы и т.д. Наличие всех этих системных средств придает инженерной работе на этом этапе проектирования контроллеров характер ремесла, а не инженерного творчества. Так как в конечном изделии (контроллере) имеются только "голый" микроконтроллер и средства его сопряжения с объектом, то выполнять отладку разрабатываемого прикладного программного обеспечения на нем невозможно (из-за отсутствия средств ввода, вывода, ОЗУ большой емкости и операционной системы), и, следовательно, разработчик вынужден обращаться к средствам вычислительной техники для выполнения всех формализуемых стадий разработки: трансляции, редактирования, отладки, загрузки объектных кодов в программируемую постоянную память микроконтроллера.
Совсем по - другому выглядит инженерный труд на этапе разработки программного обеспечения "от постановки задачи к исходной программе", так как он практически не поддается формализации и, следовательно, не может быть автоматизирован.
Проектная работа здесь носит творческий характер, изобилует решениями, имеющими "волевую" или "вкусовую" окраску, и решениями, продиктованными конъюнктурными соображениями. В силу перечисленных обстоятельств именно на этапе проектирования "от постановки задачи к исходной программе" разработчик сталкивается с наибольшим количеством трудностей.
Качество получаемого прикладного программного обеспечения контроллера всецело зависит от уровня проектных решений, принятых на этапе разработки "от постановки задачи к исходной программе". Уровень проектных решений в свою очередь из-за отсутствия теории проектирования программируемых контроллеров определяется только опытом, квалификацией и интуицией разработчика. Однако накопленный опыт убеждает в том, что систематический подход к процессу разработки прикладных программ для контроллеров обеспечивает достижение хороших результатов даже начинающими разработчиками.
Типовая структура микропроцессорной системы управления показана на рис. 1.1 и состоит из объекта управления, микроконтроллера и аппаратуры их взаимной связи.


Рисунок 1.1 - Структура цифровой системы управления на основе МК


Микроконтроллер путем периодического опроса осведомительных слов (ОС) генерирует в соответствии с алгоритмом управления последовательности управляющих слов (УС). Осведомительные слова это сигналы состояния объекта (СС), сформированные датчиками объекта управления, и флаги. Выходные сигналы датчиков вследствие их различной физической природы могут потребовать промежуточного преобразования на аналого-цифровых преобразователях (АЦП) или на схемах формирователей сигналов (ФС), которые чаще всего выполняют функции гальванической развязки и формирования уровней двоичных сигналов стандарта ТТЛ.
Микроконтроллер с требуемой периодичностью обновляет управляющие слова на своих выходных портах. Некоторая часть управляющего слова интерпретируется как совокупность прямых двоичных сигналов управления (СУ), которые через схемы формирователей сигналов (усилители мощности, реле, оптроны и т.п.) поступают на исполнительные механизмы (ИМ) и устройства индикации. Другая часть управляющего слова представляет собой упакованные двоичные коды, которые через цифро - аналоговые преобразователи (ЦАП) воздействуют на исполнительные механизмы аналогового типа. Если объект управлении использует цифровые датчики и цифровые исполнительные механизмы, то наличие ЦАП и АЦП в системе необязательно.
В состав аппаратуры связи, которая как правило, строится на интегральных схемах серии ТТЛ, входит регистр флагов, на котором фиксируется некоторое множество специфицируемых признаков как объекта управления, так и процесса работы контроллера. Этот регистр флагов используется в качестве аппаратурного средства реализации механизма взаимной синхронизации относительно медленных и вероятностных процессов в объекте управления и быстрых процессов в контроллере. Регистр флагов доступен как контроллеру, так и датчикам. Вследствие этого он является удобным местом фиксации сигналов «готов»/«ожидание» при передачах с квитированием или сигналов «запрос прерывания»/«подтверждение» при взаимодействии контроллера и объекта в режиме прерывания. Если МК-система имеет многоуровневую систему прерываний, то регистр флагов содержит схему упорядочивания приоритетов.
Для аппаратурной реализации временных задержек, формирования сигналов требуемой частоты и скважности в состав аппаратуры связи включают программируемые интервальные таймеры в том случае, если их нет в составе микроконтроллера или их число недостаточно.
Законы функционирования микропроцессорной системы управления со структурой, показанной на рис. 1 всецело определяются прикладной программой, размещаемой в резидентной памяти программ микроконтроллера. Иными словами, специализация контроллера типовой структуры на решение задачи управления конкретным объектом осуществляется путем разработки прикладных программ микроконтроллера и аппаратуры связи микроконтроллера с датчиками и исполнительными механизмами объекта.


2 РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ МЕХАНИЗМОМ
ЗАЖИГАНИЯ.
2.1 Постановка задачи.
Одной из проблем двигателя внутреннего сгорания является запаздывание момента зажигания при увеличении частоты вращения коленвала, т.к. скорость преодоления поршнем верхней мертвой точки возрастает вместе с оборотами двигателя, а время сгорания топлива остается неизменным. Это приводит к значительной потере мощности двигателя, повышенному расходу топлива и существенному ограничению максимальных оборотов двигателя.
Для нормализации работы двигателя необходимо применение механизма, изменяющего момент зажигания в зависимости от оборотов двигателя, т.е. опережение момента при увеличении оборотов. В основном это достигается применением механических устройств рис. 2.1, принцип действия которых основан на изменении положения грузиков под воздействием центробежной силы. Недостатками таких механизмов являются нестабильная работа (особенно на низких оборотах) и невозможность достижения нужного угла опережения зажигания на высоких оборотах.

1

2 1. Грузики.
2. Подвижный прерыватель.
3 3. Основа механизма.
Рисунок 2.1 - Механическая система опережения зажигания.
Избавиться от этих недостатков позволяет применение электронного механизма опережения зажигания. За основу этого механизма берется датчик, считывающий обороты распредвала и подающий сигнальные импульсы на устройство управления моментом зажигания.
К устройству управления предъявляются следующие требования:
1. прием сигнала от датчика;
2. преобразование сигнала в зависимости от оборотов двигателя (распредвала);
3. возможность изменять значение угла опережения зажигания.
4. сохранение работоспособности при воздействии высоких температур.
5. устойчивость к воздействию вибраций.
Оптимальным решением в данном случае является построение устройства управления моментом зажигания на микроконтроллере, так как преобразование сигналов датчика обеспечивается программно, что дает возможность регулировки. Термостойкость достигается применением микроконтроллера соответствующего уровня (с индексом). Устойчивость к вибрациям обеспечивается высокой степенью интеграции и малой массой радиоэлементов.

2.2 Разработка структурной схемы.
Для определения частоты вращения двигателя, как уже говорилось, необходима установка специального датчика, на основе которого будет строиться вся схема устройства рис. 2.2. Следующий элемент механизма – электронная система смещения импульса, основанная на микроконтроллере. Микроконтроллер принимает сигнал от датчика, обрабатывает его с помощью программы, записанной в его ПЗУ, и передает уже обработанный сигнал на выход. Так как микроконтроллер не в состоянии работать с высокими токами, в систему вносится ключевая схема.
Рисунок 2.2 - Структурная схема устройства.

Так же необходимым шагом является включение в схему устройства стабилизатора напряжения. Он нужен для преобразования напряжения бортовой сети транспортного средства +12В в напряжение, приемлемое для питания микроконтроллера, и гашения его скачков.
Блок управления включается для регулировки и точной настройки программы микроконтроллера под конкретный двигатель, корректировки момента искрообразования и угла опережения зажигания.
Катушка зажигания предназначена для преобразования 12- вольтового входного импульса со смещением в усиленный импульс со смещением амплитудой до 15000В. Такое высокое напряжение обеспечивает образование стабильного дугового разряда на контактах свечи зажигания.
2.3 Разработка принципиальной схемы.
Датчик Холла это индукционный датчик, действующий на основе эффекта Холла. Он применяется в бесконтактных системах зажигания автомобильного типа. Построение системы на основе этого датчика является оптимальным решением, так как он адаптирован для работы с двигателями внутреннего сгорания. Для работы датчика Холла на распредвал устанавливается стальной экран (диск) рис. 2.3, имеющий два выреза, по 120 градусов каждый. Датчик устанавливается так, чтобы диск вращался в его проеме.

1


2
1. Датчик Холла.
2. Экран датчика Холла.
Рисунок 2.3 - Экран датчика Холла и расположение датчика относительно экрана.
Датчик имеет три вывода: питание +12В. (красный), земля (черный) и сигнальный провод (зеленый). При входе шторки в про...
**************************************************************


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.