На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

Информация:

Тип работы: Контрольная. Предмет: Биология. Добавлен: 21.02.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Контрольная работа
по курсу «Физиология»
1. Общая физиология центральной нервной системы

В процессе эмбриогенеза центральная нервная система позвоночных развивается из нервной трубки, передний отдел которой дифференцируется в три мозговых пузыря, образующих передний, средний и ромбовидный мозг. У всех позвоночных имеется сходный план организации центральной нервной системы, которая представлена непарными симметричными структурами, образующими нервную ось, и парными мозговыми полушариями.
Нервную ось образуют спинной мозг, ромбовидный мозг с мозжечком, средний и промежуточный.
Спинной мозг устроен по сегментарному принципу и имеет сходную организацию у разных позвоночных. Сенсорные чувствительные корешки входят с дорсальной стороны, а двигательные выходят с вентральной стороны каждого сегмента. Число чувствительных волокон превосходит количество двигательных. В одном поясном сегменте спинного мозга находится примерно 3 - 4 * 105 нейронов, преобладающее число которых малого размера. Все клетки спинного мозга являются либо мотонейронами, либо вставочными нейронами. Тела чувствительных нервных клеток расположены в ганглиях вне спинного мозга.
В состав ромбовидного мозга входит продолговатый мозг и задний мозг, включающий варолиев мост и мозжечок. Продолговатый мозг и мозжечок имеют наиболее постоянное строение у всех позвоночных, хотя мозжечок иногда развит неодинаково даже у представителей одного и того же класса животных, что связано с особенностями образа жизни и локомоторной активности. В продолговатом мозге симметрично располагаются ядра четырех пар (IX, X, XI, XII) черепно-мозговых нерва.
Средний мозг имеет сравнительно простое устройство и относительно небольшие размеры. В ходе эволюции позвоночных этот отдел мозга претерпел значительные изменения.
Промежуточный мозг представляет непарную часть переднего мозга. Он включает зрительный бугор или таламус, субталамус и гипоталамус. Последний является наиболее древним из перечисленных образований и появляется задолго до образования зрительного бугра, развитие которого начинается у амфибий. Таламус, последовательно усложняясь у рептилий и млекопитающих, достигает максимального размера и дифференцированности у человека в связи с сильным развитием новой коры.
Мозговые полушария или конечный мозг сформировались в эмбриогенезе из переднего мозгового пузыря и включают мантию, или плащ, обонятельный мозг и базальные ганглии.
Плащ снаружи покрыт корой. Этим названием обозначают сложные клеточные организации на поверхности мозга. Они характеризуются упорядоченностью тел нервных клеток в слои и наличием поверхностного (плексиформного) слоя. Последний содержит огромное количество отростков нервных клеток, в том числе верхушечных дендритов, которые направляются перпендикулярно поверхности мозга из клеточных слоев. У всех позвоночных, за исключением млекопитающих, имеются лишь примитивные корковые образования. К ним относятся обонятельная луковица, и другие области в базальной части мозгового полушария, составляющие грушевидную долю. Кроме того, в их число входит ряд образований лимбической системы - гиппокамп и прилегающие области, занимающие значительную часть дорсомедиального отдела корковой мантии полушария. Указанные корковые территории отличаются от многослойной новой коры, появляющейся только в мантии млекопитающих. Новая кора, развиваясь на большой площади, оттесняет более примитивные корковые образования по направлению к краю мантии.
В глубине мозгового полушария расположено полосатое тело или стриатум, который у рептилий и птиц составляет основную массу переднего мозга и разделен на внутренний (палеостриатум) и внутренний стриатум. Последний является типичной структурой мозга позвоночных, за исключением млекопитающих, у которых он полностью отсутствует. Передний мозг в целом в процессе эволюции позвоночных прогрессивно увеличивается. У птиц и млекопитающих передний мозг составляет наибольшую часть центральной нервной системы.
Головной мозг, как и спинной, содержит лишь вставочные и моторные нейроны. Относительное количество вставочных нейронов в филогенезе позвоночных прогрессивно растет. У высших приматов вставочные нейроны составляют 99,95 % от общего числа нейронов мозга, обычно оцениваемого как 1010.
В головном мозге находятся также нейроглиальные клетки (олигодендроциты и астроциты), выполняющие опорную и трофическую функцию. Их число на порядок больше, чем нервных клеток.
Нервная система позвоночных

У всех позвоночных животных общий принцип построения нервной системы резко отличен от узкого типа построения нервной системы беспозвоночных животных. Центральная нервная система позвоночных животных с самых ранних этапов эмбрионального развития не имеет узлового строения; она закладывается в виде сплошной нервной трубки, которая затем дифференцируется на различные отделы мозга и которая в дальнейшем является также источником образования нервных узлов на периферии (в симпатической и парасимпатической нервны системах). Такие узлы являются, следовательно, вторичными образованиями и состоят из клеток, мигрировавших из первоначальной сплошной нервной трубки. Нервная трубка всегда расположена на спинной (дорсальной) стороне тела, в то время как узловая нервная цепочка сложных беспозвоночных является брюшной и расположена на вентральной стороне.
Физиологические свойства нервных центров.
Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия синапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются:
односторонее проведение возбуждения;
задержка проведения возбуждения;
суммация возбуждений;
трансформация ритма возбуждений;
рефлекторное последействие;
быстрая утомляемость.
Односторонее проведение возбуждения в центральной нервной системе обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране.
Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.
Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает при длительном раздражени рецепторов слизистой оболочки носа.
Трансформация ритма возбуждений заключается том, что центральная нервная система на любой ритм разражения, даже медленый, отвечает залпом импульсов. Частота возбуждений, поступающих из нервных центров на переферию к рабочему органу, колеблется от 50 до 200 в секунду. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.
Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия.
Нервные центры легко утомляевы в отличие от нервных волокон. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.
Рефлекторный тонус нервных центров

В состоянии длительного покоя, без нанесения дополнительных раздражений, из нервных центров на переферию к соответствующим органам и тканям поступают разряды нервных импульсов. В покое частота разрядов и количество одновременно работающих нейронов очень не большие. Редкие импульсы, непрерывно поступающие из нервных центров, обуславливают тонус (умеренное напряжение) скелетных мышц, гладких мышц кишечника и сосудов. Такое постоянное возбуждение нервных центров носит название тонуса нервных центров. Он поддерживается афферентными импульсами, непрерывно поступающими от рецепторов, и различными гуморальными влияниями.
Торможение в центральной нервной системе

Томожение - активный процесс. Торможение возникает в результате сложных физико - химических изменений в тканях, но внешне этот процесс проявляется ослаблением функции какого - либо органа.
В настоящее время принято выделять две формы торможения: первичное и вторичное.
Для возникновения первичного торможения необходимо наличие специальных тормозных структур (тормозных нейронов и тормозных синапсов). Торможение в этом случае возникает первично без предшествующего возбуждения.
Первичное торможение играет большую роль в ограничении поступления нервных импульсов к эффекторным нейронам, что имеет существенное значение в координации работы различных отделов центральной нервной системы.
Для возникновения вторичного торможения не требуется специальных тормозных структур. Оно развивается в результате изменения функциональной активности обычных возбудимых нейронов.
Значение процесса торможения
Торможение наряду с возбуждением принимает активное участие в приспособлении организма к окружающей среде. Торможение играет важную роль в формировании условных рефлексов: освобождает центральную нервную систему от переработки менее существенной информации; обеспечивает координацию рефлекторных реакций, в частности, двигательного акта. Торможение ограничивает распространение возбуждения на другие нервные структуры, предотвращая нарушение их нормального функционирования, то есть торможение выполняет охранительную функцию, защищая нервные центры от утомления и истощения.
Принципы координации в деятельности центральной нервной системы

Согласованное проявление отдельных рефлексов, обеспечивающих выполнение целостных рабочих актов, носит название координации.
Явление координации играет важную роль в деятельности двигательного аппарата. Координация таких двигательных актов, как ходьба или бег, обеспечивается взаимосвязанной работой нервных центров.
За счет координированной работы нервных центров осуществляется совершенное приспособление организма к условиям существования. Это происходит не только за счет деятельности двигательного аппарата, но и за счет изменений вегетативных функций организма (процессов дыхания, кровообращения и т. д.).
Установлен ряд общих закономерностей - принципов координации:
принцип конвергенции;
принцип иррадиации возбуждения;
принцип реципрокности;
принцип последовательной смены возбуждения торможением и торможения возбуждением;
феномен «отдачи»;
цепные и ритмичные рефлексы;
принцип общего конечного пути;
принцип обратной связи;
принцип доминанты.
Принцип конвергенции. Импульсы, приходящие в центральную нервную систему по различным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным и эффекторным нейронам. Конвергенция нервных импульсов объясняется тем, что афферентных нейронов в несколько раз больше, чем эффекторных. Поэтому афферентные нейроны образуют на телах и дендритах эффекторных и вставочных нейронов многочисленные синапсы.
Принцип иррадиации. Импульсы, поступающие в центральную нервную систему при сильном и длительном раздражении рецепторов, вызывают возбуждение не только данного рефлекторного центра, но и других нервных центров. Это распространение возбуждения в центральной нервной системе получило название иррадиации. Процесс иррадиации связан с наличием в центральной нервной системе многочисленных ветвлений аксонов и особенно дендритов нервных клеток и цепей вставочных нейронов, которые объединяют друг с другом различные нервные центры.
Принцип реципрокности (сопряженности). Принцип реципрокности был показан по отношению к нервным центрам антагонистов мышц - сгибателей и разгибателей конечностей. Наиболее отчетливо он проявляется у животных с удаленным головным мозгом и сохраненным спинным. Если раздражать у спинального животного кожу конечностей, а на противоположной стороне в это время наблюдается рефлекс разгибания. Описанные явления связаны с тем, что при возбуждении центра сгибания одной конечности происходит реципрокное торможение центра разги и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.