На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Значение корреляции между нейронными сигналами и длиной волны света, падающего на сетчатку. Конвергенция сигналов и пути цветного зрения. Интеграция и горизонтальные связи зрительной информации. Процесс объединения правого и левого зрительных полей.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 31.10.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Цветовое зрение
Цветовое зрение
Мелкоклеточные нейроны зрительного тракта несут информацию о тонких деталях формы и цвета объектов. На уровне колбочек мы видели четкую корреляцию между нейронными сигналами и длиной волны падающего на сетчатку света . Колбочки красного, зеленого и синего типа предпочтительно поглощают свет в области длинно-, средне--и коротковолнового спектра. В принципе, при помощи сравнения активности каждого типа колбочек, нервная система может рассчитать длину волны света. Однако таким ли образом осуществляется восприятие цвета центральным зрительным анализатором?
Конвергенция сигналов от колбочек начинается с уровня горизонтальных клеток, преобразующих эти сигналы в цветовой код, и продолжается в дальнейшем в ганглиозных клетках и мелкоклеточной части латерального коленчатого тела. Свойства подобных ганглиозных клеток и клеток ЛКТ, использующих цветовой код. Значительной трансформации свойств рецептивного поля при прохождении сигнала от зрительного нерва до клеток ЛКТ не наблюдалось. Рецептивные поля клеток ЛКТ имеют концентрическую форму, с красным "on"-центром и зеленой "off"-периферией. Маленькое красное пятно, освещающее центр, вызывает бурный разряд; большее по размеру зеленое пятно, нанесенное не в центральной области, приводит к торможению. Подобного рода клетка отвечает наилучшим образом на красный цвет на нейтральном или голубом, но не на зеленом фоне. Она имеет традиционные свойства «центр-периферия» при ответе на вспышки белого цвета. Другие клетки имеют желто-голубые антагонистические зоны (желтый как смесь красного и зеленого цвета). Разные типы организации рецептивного поля «центр-периферия», наблюдаемые в мелкоклеточных слоях ядра латерального коленчатого тела обезьян.
Красно-зеленые и желто-голубые нейроны представляют собой примеры клеток, воспринимающих противоположные цвета. Они анализируют длину волны, сравнивая сигналы, поступающие на них от колбочек именно таким образом, как представляли себе Янг и Гельмгольц . Красный, зеленый, голубой, желтый, черный и белый шар на бильярдном столе вызывает в этих клетках определенные, уникальные сигналы, которые затем передаются в мозг.
Пути цветного зрения
Картина последовательных шагов коркового анализа цвета и его восприятия была составлена на основании экспериментов Зеки, Хьюбеля, Доу, Ланда и их коллег. Как уже упоминалось, пути передачи информации о цвете отделены, в основном, от путей, занимающихся анализом других свойств, таких как пространственная глубина изображения, движение, контраст и форма. Зеки показал, что мелкоклеточный путь, идущий от зоны V1 через V2 к зоне V4, имеет в своем составе большое количество клеток, кодирующих цветовую информацию. Доказательство ключевой роли зоны V4 в цветовом зрении было получено при помощи позитронно-эмиссионной томографии и функционального магнитного резонанса при изучении здоровых людей. При проецировании цветовых паттернов на сетчатку повышенная активность была отмечена в области, совпадающей с зоной V4 Отдельное восприятие цвета и формы изображения наиболее убедительно демонстрируется в тех редких случаях, когда пациенты страдают потерей цветового зрения из-за изолированного повреждения головного мозга (церебральная ахроматопсия). Например, описан случай, когда пациент перенес двустороннюю травму мозга в той части, которая располагается перед зоной V1, что примерно соответствует области V4. До повреждения у него было нормальное цветовое зрение, но после травмы он потерял способность различать цвета. Он знал из своего предыдущего опыта, что земляника имееткрасный цвет, а банан -- желтый, но после повреждения все виделось ему как будто в черно-белом кино. Другие функции, такие как память и распознавание форм, были лишь незначительно повреждены, и он был способен продолжать свою работу таможенного инспектора. При демонстрации ему какого-либо объекта он мог описать, какой цвет должен иметь этот объект, но не мог сопоставить этот цвет с предложенной цветовой шкалой. Однако никаких дефектов ни в речи, ни в распознавании объектов не наблюдалось, только лишь в самом восприятии цветов.
Психофизические исследования у нормальных людей подтверждают отделение информации о цвете от другой информации сразу после восприятия. Подробные описания этого даны в статьях и обзорах Зеки, Хьюбеля и Ливингстона. Например,трудно, или даже невозможно, выделить структуру или форму изображения, если не происходит активация крупноклеточных путей зрительного анализатора, воспринимающих зоны контраста на изображении, обычно представленные различными степенями яркости и тени. Мелкоклеточная система, с ее акцентом на восприятие цвета и высокое пространственное разрешение, имеет ограниченные возможности по восприятию формы предметов. Следовательно, цветное изображение сложной структуры с многими компонентами, отражающими зоны с одинаковом уровнем освещенности, для мелкоклеточной системы представляется таким, что не содержит конкретных форм. Это происходит потому, что не работает крупноклеточный путь. Подобным же образом наши ощущения глубины изображения и движения также могут терять свою эффективность, если контраст черно--белого изображения недостаточен для активации крупноклеточных путей. Впечатляющей демонстрацией этого является перемещение рисунка из зеленых и красных полосок вдоль телевизионного экрана. Интенсивность каждого цвета может быть подобрана так, что полоски становятся эквилюминентными (т. е. каждая красная или зеленая полоска излучает такое же эффективное количество света, как и соседняя, хотя и на другой длине волны). Мы по-прежнему видим цветовые полоски, но кажется, что они перестали двигаться.
Цветовое постоянство
Основная проблема в нашем понимании цветного зрения -- это понять, каким образом кора определяет, какого цвета тот или иной объект зрительной сцены. В нашем мозге подобного рода расчеты так удачно запрограммированы, что мы интуитивно не осознаем, что здесь может быть какая-либо проблема. Разумеется, иллюстрации голубого цвета в этой книге выглядят голубыми потому, что они отражают свет на короткой длине волны. Из всего, сказанного до сих пор, можно представить себе, что цвета, которые мы видим, определяются просто и непосредственно длиной волны света. Однако для Гельмгольца это не было так очевидно. Он указывал, что яблоко, которое мы видим днем, на закате и в свете свечи выглядит красным. Однако свет, отраженный от его поверхности, содержит гораздо больше красного цвета на закате и гораздо больше желтого в свете свечи. Каким-то образом мозг «приписывает» красный цвет яблоку и не меняет своего восприятия даже при очень различных условиях. Изображение яблока в мозге как бы «не принимает в расчет освещение».
Сходным примером является тон двух корректно экспонированных фотографий, сделанных на одной и той же пленке при дневном свете и в комнате с искусственным светом от электрических ламп. Цвета в дневном свете выглядят более реалистичными, а на фото, сделанном в помещении, имеют больше желтого цвета. Однако мы, тем не менее, совсем не осознаем этой желтизны, когда искусственно освещаем комнату. (Этот феномен до недавнего времени наблюдался очень часто; сейчас вспышки, присутствующие почти на каждом фотоаппарате, имеют спектр, близкий к спектру дневного света). Биологические преимущества цветового постоянства очевидны: зеленые ягоды не должны превращаться в красные на закате; розовые губы не должны становиться желтыми в свете свечи.
Впечатляющая демонстрация цветового постоянства была разработана Ландом, что послужило мощным стимулом для нейробиологических исследований в области цветового зрения. Его демонстрация показала, что то, каким мы видим цвет объекта, существенно зависит от света, отраженного от всего изображения, а не только от самого объекта. Мы не можем определить цвет -- желтый, зеленый, голубой или белый -- для какой либо области, только определяя длину волны отраженного от этой области света. Нам также необходимо знать композицию света, отраженного от соседних областей. Такой стран ный вывод, известный как феномен Ланда, кажется противоположным тому, что нам говорит наша интуиция. Так же как для черного и белого, мозг формирует восприятие цвета, сравнивая свет, падающий на различные области сетчатки, вместо того, чтобы измерять абсолютную яркость и длину волны в одном ее месте. Скорее всего, это как если бы в коре проводилось тотальное сравнение контраста на всех границах изображения для трех различных изображений, видимых через коротко-, средне- и длинноволновые фильтры.
Невозможно дать всеобъемлющее и удовлетворительное описание феномена Ланда в терминах свойств рецептивных полей клеток, кодирующих цвета в областях V1, V2 и V4. Однако один тип клеток, известный как «клетки двойного противопоставления» (double opponent cells), имеет свойства, которые могут принимать участие в восприятии цветового постоянства. Первоначально они были описаны Доу в сетчатке золотой рыбки. Затем подобные клетки были обнаружены в коре приматов, но не в ядрах латерального коленчатого тела или в сетчатке. Следовательно, они участвуют в более поздних стадиях переработки информации о цвете. Вкратце, такие клетки имеют рецептивные поля примерно концентрической формы в виде «центр-периферия», имеющие красно-зеленый или желто-голубой антагонизм . Но, в отличие от клеток цветного противопоставления в ЛКТ, в клетках двойного противопоставления каждый цвет вызывает антагонистичные эффекты, как в центре, так и в области периферии. Следовательно, при освещении красным цветом в центре рецептивного поля происходит "on"-разряд, красное же освещение периферии приводит к "off"-разряду. Зеленый цвет в области периферии приводит к "on"-разряду, а в центре -- к "off".
Предположим, что мы вызываем разряды при помощи маленького красного пятна в центре рецептивного поля такой клетки, используя в качестве фона монотонное белое освещение. Если мы сейчас увеличим долю красного цвета в монотонном освещении, то уровень сигнала изменится только незначительно: увеличенное возбуждение центральной зоны красным цветом будет компенсироваться более сильным торможением в ответ на освещении периферических зон красным. В самом деле, баланс сигналов с колбочек, воспринимающих красный, зеленый и голубой цвета, различен для центра и периферии, а также колеблется от клетки к клетке в области первичной зрительной коры (V,), таким образом можно наблюдать непрерывный переход антагонистических оттенков. Это противоречит цветовым предпочтениям нейронов ЛКТ, которые в значительной степени совпадают с основными воспринимаемыми цветами. Можно предположить, что длинные горизонтальные связи между пятнами играют определенную роль в пространственных взаимосвязях, которые позволяют объяснить феномен Ланда.

Интеграция зрительной информации

Горизонтальные связи в пределах первичной зрительной коры
Схема обработки зрительной информации, подобная той, представляет собой рабочую модель, которая помогает придать нашим представлениями более организованный вид. Однако разделение крупноклеточного и мелкоклеточного пути -- для определения контраста, движения и глубины изображения, с одной стороны, и цвета и фона -- с другой -- ни в коей мере не является полным. Взаимодействие между ними обнаруживается даже в области V,, где сигналы от крупноклеточных клеток можно обнаружить в зоне пятен и между пятнами. Более того, только зоны V1 и V2 четко определены и относительно их границ имеется согласие; дополнительные же зоны ассоциативной зрительной коры не имеют четко очерченных границ. Свойства рецептивных полей клеток, расположенных в этих зонах, могут сильно варьировать и различные типы зрительных полей могут быть представлены не в столь четко организованном порядке.
В самой зоне V1 было описано большое разнообразие связей, что предполагает наличие более сложных принципов организации, чем ранее предполагалось. Использование классических методов окраски, таких как окраска (импрегнация) по Гольджи, выявляет доминирование нейронных отростков, которые направляются, в основном, перпендикулярно поверхности коры из слоя в слой. При помощи внутриклеточных инъекций красителей было показано, что кортикальные нейроны имеют также длинные горизонтальные отростки, которые простираются латерально от колонки к колонке (рис. 1.А). Соединения, подобные этим, дают большой вклад в синтез удлиненных рецептивных полей простых клеток слоя 6 зоны V1 : рецептивные поля клеток слоя 5 комбинируются и добавляются конец в конец к полям простых клеток слоя 6 при помощи длинных горизонтальных аксонов. Было обнаружено большое количество простых и комплексных клеток с длинными горизонтальными отростками, имеющими длину более 8 мм, образующих сверхколонки. Отдельный нейрон, таким образом, может интегрировать информацию с целой зоны поверхности сетчатки в несколько раз превосходящей размеры рецептивного поля, измеряемого стандартными методами.
Особенный интерес представляет то, что соединения образуются между колонками, которые имеют сходные ориентационные особенности. Доказательства таких особых соединений были получены при помощи двух дополнительных методов. Во-первых, когда метки были введены в одну колонку, они транспортировались в удаленную сверхколонку, имеющую те же ориентационные предпочтения (рис.1.В). Во-вторых, при помощи перекрестной корреляции паттернов активности нейронов, имеющих одни и те же ориентационные предпочтения, но расположенных в разных удаленных друг от друга колонках, можно сделать вывод, что между ними имеются функциональные связи. Более того, после повреждения сетчатки, кортикальные клетки, лишенные сигнала, также демонстрируют ответы на удаленные стимулы, которые располагаются вне пределов их «нормальных» рецептивных полей.
Рецептивные поля обоих глаз, конвергирующие на кортикальных нейронах
Когда мы смотрим на объект одним или двумя глазами, мы видим только одно изображение, даже если размер и расположение проекции объекта немного отличается на двух сетчатках. Интересно, что еще более 100 лет назад Иоханес Мюллер предположил, что отдельные нервные волокна от обоих глаз могут пересекаться и образовывать связи с одними и теми же клетками в ЦНС. Таким образом, он почти предвидел результаты, полученные Хьюбелем и Визелем. Они обнаружили, что около 80 % всех кортикальных нейронов в зрительных областях мозга кошки получают сигналы от обоих глаз. Поскольку нейроны, располагающиеся в различных слоях ЛКТ, преимущественно иннервированы либо одним, либо другим глазом, формирование перекрестного взаимодействия между различными глазами становится возможным только в коре. Как уже упоминалось ранее, р и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.