На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Первый экологический кризис смена анаэробной атмосферы на аэробную. Особенности биосинтеза органических соединений при хемосинтезе. Нюансы фотосинтеза, цикл превращения солнечной энергии в углеводы. Эволюция живых организмов, появление человека.

Информация:

Тип работы: Реферат. Предмет: Биология. Добавлен: 18.11.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


23
РЕФЕРАТ
по дисциплине «Естествознание»
по теме: «Эволюция планеты Земля»
Оглавление

    Введение
    1. Первый экологический кризис - смена анаэробной атмосферы н аэробную
    2.Фотосинтез и хемосинтез
    3.Эволюция живых организмов. Появление человека
    Заключение
    Список использованной литературы
    Введение

    Дарвинизм оказался привлекательным для материалистически ориентированной научной общественности XIX века тем, что эта концепция эволюции якобы устраняет сверхъестественные представления о происхождении живого. За эту иллюзию теории Дарвина прощали очень многие ее дефекты и по той же причине проделали огромную работу для того, чтобы совместить дарвинизм с реальными достижениями генетики. Справедливости ради следует сказать, что сам Дарвин достаточно четко очертил требования к собственной концепции, ограничив их происхождением видов. Дарвинизм не пытается объяснить не только происхождение жизни, но даже происхождения достаточно крупных биологических таксонов. Тем более в рамках дарвинизма отсутствуют представления, помогающие хотя бы гипотетически представить, как возникло сознание.
    Привлекательность дарвинизма заключается в том, что он использует чисто механистические объяснения эволюционного процесса, разрешая апелляцию к понятию случайности. Важно то, что сущности, лежащие в основе объясняемых феноменов, вполне отвечают представлениям обыденного здравого смысла. В основе модели эволюции Дарвина лежат случайные изменения отдельных материальных элементов живого организма при переходе от поколения к поколению. Те изменения, которые имеют приспособительный характер (облегчают выживание), сохраняются и передаются потомству. Особи, не имеющие соответствующих приспособлений, погибают, не оставив потомства. Поэтому в результате естественного отбора возникает популяция из приспособленных особей, которая может стать основой нового вида.
    Теорию дарвинизма компрометирует отсутствие прогнозов, невозможность предсказать новые факты. Впрочем, этот упрек разделяют с ним все остальные эволюционные теории, которые успешно объясняют многие из существующих фактов, но практически не ставят вопроса о новых. Следовательно, здесь неприменим лучший критерий теоретической силы той или иной концепции. Вспомним, что закон гомологических рядов Н.И. Вавилова позволил предугадать новые находки растений - родственников культурных сортов. По-видимому, о возможности подобных предсказаний думал А.А. Любищев. Некоторые палеоботанические прогнозы удавались С.В. Мейену.
    Однако, при всех неясностях, эволюционная теория имеет большое значение для развития теоретического знания о происхождении жизни. Рассмотрим ряд ключевых точек в эволюции органического мира, сделавших возможным появление человека.
    1. Первый экологический кризис - смена анаэробной атмосферы на аэробную

    Протерозойская и архейская эры, объединяемые в криптозой, или докембрий, долгое время оставались загадкой для науки. Древнейшие из известных минералов имеют возраст 4,2 млрд. лет (оценка возраста Земли в 4,5-4,6 млрд. лет основана на анализе вещества метеоритов и лунного грунта). Возраст же древнейших пород, в которых найден углерод заведомо органического происхождения (в углероде, принимавшем когда-либо участие в реакциях фотосинтеза, необратимо меняется соотношение изотопов 12C и 13C) составляет 3,8 млрд. лет. Формация Исуа в Гренландии, где были обнаружены эти углеродистые прослои, одновременно является вообще древнейшими на Земле осадочными породами. Таким образом, первые достоверные следы жизни появляются на Земле одновременно с первыми достоверными следами воды.
    Еще недавно биологи уверено рисовали - исходя из общих соображений - такую картину. Самый длинный отрезок в истории Земли приходился на образование первых биологических систем из неорганической материи. Несколько меньшее время потребовалось на возникновение первых клеток, и лишь после этого начался все ускоряющийся процесс собственно биологической эволюции. Первыми живыми существами были гетеротрофные микроорганизмы, питавшиеся «первичным бульоном» - той органикой, что в избытке возникала в первичной атмосфере и океане в результате процессов, частично смоделированных Миллером. Затем уже возникли и автотрофы, синтезирующие органику из углекислого газа и воды, используя для этого энергию окислительных химических реакций (хемоавтотрофы) или солнечного света (фотоавтотрофы).
    Реальные факты, однако, вынудили отказаться от этой умозрительной схемы. В числе прочего не нашли подтверждений и представления об исходной гетеротрофности живых существ; судя по всему, авто- и гетеротрофность возникли одновременно. Один из ведущих специалистов по микробным сообществам Г.А. Заварзин обращает внимание на то, что «первичный бульон» даже теоретически не мог быть источником пищи для «первичной жизни», так как является конечным, исчерпываемым ресурсом. Поскольку живые существа размножаются в геометрической прогрессии, потомство первых же гетеротрофов должно было бы сожрать весь этот «бульон» за совершенно ничтожное время; после этого все они, естественно, мрут от голода. Не меньшие неприятности, впрочем, ожидают и чисто автотрофную биосферу, которая в том же темпе свяжет весь углерод на планете в виде неразложимых высокомолекулярных соединений.
    Первичность хемоавтотрофности - относительно фотоавтотрофности - тоже принято было считать несомненной; серьезным аргументом тут является то обстоятельство, что наиболее архаичные из всех покариот, архебактерии - именно автотрофы. Однако и здесь, как выяснилось, все не так уж очевидно. Молекула фотосинтезирующего пигмента (например, хлорофилла) поглощает квант света; в дальнейшем энергия этого кванта используется в различных химических превращениях. Так вот, есть серьезные основания полагать, что первичной функцией этих пигментов была просто-напросто нейтрализация разрушительной для организма (да и вообще для любой высокомолекулярной системы) энергии квантов ультрафиолетового излучения, беспрепятственно проникавшего в те времена сквозь лишенную озонового слоя атмосферу. Впоследствии те, кто приспособился еще и использовать эту энергию «в мирных целях», разумеется, получили гигантские преимущества, однако сама по себе «радиационная защита» ДНК при помощи пигментов должна была сформироваться еще на стадии доорганизменных гиперциклов. Понятно, что доводить эту защиту до совершенства имело смысл лишь тем из них, кто обитал в поверхностном слое океана (10-метровый слой воды полностью защищает от ультрафиолета любой интенсивности); именно они, судя по всему, и дали начало фотоавтотрофам, тогда как глубины остались в распоряжении хемоавтотрофов.
    Первыми организмами были фотоавтотрофы: древнейшие организмы из формации Исуа были именно фотосинтезирующими, а в породах возраста 3,1 млрд. лет содержатся остатки хлорофилла фитан и пристан, и даже неразложившийся цианобактериальный пигмент фикобилин), но гораздо проще отслеживать деятельность фотоавтотрофов по одному из ее побочных продуктов кислороду. Кислород не может быть получен путем дегазации магмы, и потому отсутствовал в первичной атмосфере Земли, которая была восстановительной. Начало образования руд, состоящих из гематита Fe2O3 и магнетита FeO (Fe2O3) означает появление на Земле источника молекулярного кислорода - фотосинтезирующих организмов.
    Источник кислорода возник, но атмосфера еще на протяжении полутора миллиардов лет оставалась анаэробной: об этом свидетельствует наличие в соответствующих отложениях конгломератов из пирита (FeS2). Сообщества фотоавтотрофов формируют в это время своеобразные кислородные оазисы в бескислородной пустыне; их возможностей хватает на создание окислительных обстановок (и осаждение железа в окисной форме) лишь в своем непосредственном окружении.
    Около 2 млрд. лет назад, когда процесс гравитационной дифференциации недр привел к тому, что большая часть железа перешла в ядро планеты, окисление закисного железа и осаждение его в виде джеспилитов завершилось; именно в это время возникли все крупнейшие месторождения железа, такие, как Курская магнитная аномалия. В дальнейшем руды этого типа уже не образовывались.
    Именно в это время (1,9 млрд. лет назад) в канадской формации Ганфлинт впервые появляются звездчатые образования, полностью идентичные тем, что образует ныне облигатно-аэробная марганцевоосаждающая бактерия Metallogenium. Без кислорода окисление железа и марганца не идет, и образуемые этой бактерией металлические кристаллы в виде характерных «паучков» возникают только в сильно окислительной обстановке. Это должно означать, что в тот момент содержание кислорода в атмосфере уже достигло величины как минимум в 1% от современного (точка Пастера). Именно с этой пороговой концентрации становится «экономически оправданным» налаживание процесса кислородного дыхания, в ходе которого из каждой молекулы глюкозы можно будет получать 38 энергетических единиц (молекул АТФ) вместо двух, образующихся при бескислородном брожении. С другой стороны, в атмосфере начинает возникать озоновый слой, преграждающий путь смертоносному ультрафиолету, что ведет к колоссальному расширению спектра пригодных для жизни местообитаний. Примерно к середине протерозоя (1,7-1,8 млрд. лет назад) «кислородная революция» в целом завершается, и Мир становится аэробным. Впрочем, с точки зрения существ, составлявших тогдашнюю биосферу, этот процесс следовало бы назвать иначе: «Необратимое отравление кислородом атмосферы планеты». Смена анаэробных условий на аэробные не могла не вызвать катастрофических перемен в структуре тогдашних экосистем, и в действительности «кислородная революция» есть не что иное, как первый в истории Земли глобальный экологический кризис.
    В раннем докембрии существовал особый мир, формируемый прокариотными организмами бактериями и цианобактериями. Среди прокариот неизвестны многоклеточные организмы. Есть нитчатые и пальмеллоидные формы цианобактерий, однако уровень интеграции клеток в этих структурах это все-таки уровень колонии, а не организма.
    Для докембрийских осадочных толщ чрезвычайно характерны строматолиты (по-гречески - «каменный ковер») тонкослойчатые колонны или холмики, состоящие главным образом из карбоната кальция. Строматолит образуется в результате жизнедеятельности совершенно ни на что не похожего прокариотного сообщества, называемого цианобактериальным матом. Маты существуют во многих районах мира, главным образом в таких гипергалинных (пересоленых) лагунах, как наш Сиваш, однако настоящие строматолиты, как в Шарк-Бэй и на Багамской отмели, они образуют довольно редко.
    Не все маты представляли собою донные сообщества. Дело в том, что, помимо уже известных нам строматолитов, следы жизнедеятельности микробных сообществ представлены еще и онколитами более или менее сферическими образованиями, в которых известковые слои располагаются не линейно (как в строматолите), а образуют концентрическую структуру. Предполагается, что онколиты создавались «…особыми прокариотными сообществами, имевшими облик плавающих в толще воды шаров, оболочка которых представляла собой мат».
    Вероятно, в те времена на окраинах континентов формировались обширные мелководные бассейны с постоянно меняющимся уровнем воды и без настоящей береговой линии. Именно в этом «вымершем» ландшафте, не являющемся ни сушей, ни морем в современном смысле, и процветали строматолитовые экосистемы.
    В середине протерозоя (около 1,9-2 млрд. лет назад) в составе фитопланктона появились такие организмы, которых считают первыми на Земле эукариотами. Первые эукариоты появились около двух миллиардов лет назад среди фитопланктонных акритарх; вскоре к ним добавились и нитчатые формы с эукариотными параметрами клеток. Замечательно, что они никогда не встречаются в прокариотных бентосных сообществах (цианобактериальных матах), а с самого начала формируют свой собственный тип растительности, названный В. Шенборном (1987) «водорослевыми лугами». Ныне сообщества такого типа известны лишь в некоторых антарктических внутренних водоемах; в докембрии же они, судя по характеру осадков, были широко распространены в морях за пределами мелководий (которые были заняты матами).
    К середине рифея (1,4-1,2 млрд. лет) эти нитчатые эукариотные формы достигли значительного разнообразия. Именно тогда в составе «водорослевых лугов» появились и первые макроскопические водоросли с пластинчатым, корковым и кожистым типами слоевища, а к венду (650 млн. лет) основным компонентом этих сообществ становятся вендотении - лентовидные водоросли длиной до 15 см. Есть даже сообщение о находке каких-то пластинчатых водорослей в китайской формации Чанчен с возрастом 1,8 млрд. лет; эта датировка нуждается в подтверждении, но не кажется нереальной. Дело в том, что таксономическая принадлежность всех этих форм недостаточно ясна, однако некоторые из них очень сходны с низшими красными водорослями - бангиевыми. Красные же водоросли, как полагают многие исследователи, являются самой архаичной ветвью эукариот, и даже, возможно, произошли в результате «независимой эукариотизации» цианобактерий.
    А вот животные, а также следы их жизнедеятельности (норки и следовые дорожки на поверхности осадка), достоверно появились в палеонтологической летописи лишь в конце протерозоя - около 800 млн. лет назад. В чем же причина того, что истинная многоклеточность возникла так поздно? В шестидесятые годы существовала гипотеза «кислородного контроля» Беркнера и Маршалла, согласно которой содержание кислорода в земной атмосфере вплоть до начала фанерозоя (540 млн. лет назад) было ниже точки Пастера и не допускало существования более высокоорганизованных форм жизни, чем водоросли. Поскольку позже было установлено, что точка Пастера в действительности была пройдена гораздо раньше - более чем за миллиард лет до времени появления первых многоклеточных, причинная связь между этими явлениями была отвергнута, и о гипотезе «кислородного контроля» забыли. И, как выяснилось, напрасно.
    Дело в том, что однопроцентный уровень содержания кислорода (имеется в виду 1% от его современного количества) - это тот критический минимум, ниже которого аэробный метаболизм принципиально невозможен; однако для жизнедеятельности макроскопических животных кислорода необходимо существенно больше. Б. Раннегар недавно провел специальные расчеты, из которых следует, что для животных, составлявших первую фауну многоклеточных - эдиакарскую, уровень содержания кислорода должен был составлять не менее 6-10% от нынешнего - это в том случае, если они имели развитую систему циркуляции, доставлявшую кислород к тканям. Если же такая система у них еще не развилась и они дышали за счет прямой диффузии, то необходимое для их жизнедеятельности содержание кислорода должно было быть еще выше, может быть - сопоставимо с нынешним. Итак, гипотеза «кислородного контроля» кажется вполне логичным объяснением появления макроскопических животных лишь в конце протерозоя - если принять более высокий критический порог, чем однопроцентный, предлагавшийся Беркнером и Маршаллом.
    Известно, что количество кислорода, создаваемого небиологическими процессами (фотолиз воды и т.д.), совершенно ничтожно; почти весь свободный кислород планеты создан фотосинтезирующими организмами. Однако живые существа не только производят кислород, но и потребляют его в процессе дыхания. В биосфере осуществляется достаточно простая химическая реакция: n СО2 + n H2O ( (CH2O)n + n О2. «Читая» ее слева направо, мы получаем фотосинтез, а справа налево - дыхание (а также горение и гниение). Уровень содержания кислорода на планете стабилен потому, что прямая и обратная реакции взаимно уравновешиваются; так что если мы попытаемся увеличить содержание свободного кислорода в атмосфере путем простого наращивания объема фотосинтезирующего вещества, то из этой затеи ничего не выйдет. Сместить химическое равновесие, как вам должно быть известно из курса химии, можно, лишь выводя из сферы реакции один из ее продуктов. В нашем случае - добиться увеличения выхода О2 можно, лишь необратимо изымая из нее восстановленный углерод в форме (CH2O)n или его производных.
    Таким образом, производство кислорода биосферой начинает превалировать над потреблением этого газа (ею же) только если происходит захоронение в осадках неокисленного органического вещества. Поэтому, если мы установим, что в некий период геологической истории происходило интенсивное захоронение органического углерода, то мы вправе будем заключить, что в это время столь же интенсивно накапливался и кислород. А вот оценить темпы захоронения органического углерода в прошлые эпохи вполне возможно - для этого существует специальный метод, основанный на изучении изотопного отношения 12C/13C в соответствующих осадках (органический углерод, участвовавший когда-либо в реакциях фотосинтеза, обогащен «легким» изотопом 12C).
    Несколько лет назад на архипелаге Шпицберген была открыта уникальная по полноте последовательность позднепротерозойских осадков, отлагавшихся в период с 850 до 600 млн. лет назад. Исследовав эти осадки на предмет изотопного отношения 12C/13C, Э. Нолль (1996) установил, что на протяжение всего этого времени темпы захоронения органического углерода оставались самыми высокими за всю историю Земли. Изучение позднепротерозойских осадков в других районах мира - в Канаде, Австралии и Южной Африке - подтвердило выводы Нолля. Итак, появлению макроскопической фауны предшествовало резкое увеличение количества свободного кислорода; вряд ли можно счесть это случайным совпадением.
    О том, что на Земле в это время действительно существенно возросло содержание кислорода, могут свидетельствовать и другие факты. Во-первых, в океанах вновь происходит осаждение джеспеллитов, прекратившееся около 1,8 млрд. лет назад. Это может означать, что кислород впервые насытил глубоководные части океана, располагающиеся ниже фотической зоны, и при этом произошло осаждение еще сохранявшихся в тех глубинах запасов закисного железа. Во-вторых, это было время как минимум трех покровных оледенений, последнее из которых - Лапландское (600 млн. лет назад) - было, по всей видимости, самым крупным за всю историю Земли. Одной же из причин начала оледенений считают так называемый «обратный парниковый эффект»: когда в атмосфере планеты отношение О2/СО2 смещается в сторону кислорода, планета начинает гораздо хуже удерживать теп и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.