На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовая Топологии вычислительных сетей

Информация:

Тип работы: Курсовая. Предмет: Информатика. Добавлен: 13.06.2012. Сдан: 2011. Страниц: 47. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ

Введение
Глава 1. Физические топологии сетей
1.1. Базовые топологии сетей
1.2. Прочие топологии сетей (цепочечная, полносвязная, ячеистая, комбинированная)
Глава 2. Логические топологии сетей
2.1. Логическая шина
2.2. Логическое кольцо
2.3. Логическая звезда (коммутация)
Глава 3. Особенности практической применимости сетей Ethernet различных классов
3.1. Класс 10BaseY
3.2. Класс 100BaseY
3.3. Класс 1000BaseT (GigabitEthernet)
Заключение
Глоссарий
Библиографический список
Приложения

ВВЕДЕНИЕ

1) В современном обществе существует одна из потребностей- это связь между людьми, странами, континентом. Она должна быть быстрой, надежной и удобной.
Связь между компьютерами обеспечивают сети
2)В данной работе будут рассмотрены основные типовые топологии вычислительных сетей.
Актуальность данной работы обусловлена тем, что в связи с распространением персональных компьютеров и созданием на их основе автоматизированных рабочих мест (АРМ) возросло значение локальных вычислительных сетей (ЛВС), являющиеся объектом моего исследования. Предметом исследования являются основные топологии вычислительных сетей. Целью исследования является анализ и оценка основных топологий сетей, а в задачи исследования входит 1)изучение топологий сетей, 2)вывод о работе сетей с различной топологией, 3)выявление достоинств сетей и недостатков, возможность разбираться в преимуществах и недостатках топологий, влияющих на производительность сети.
Методы: 1)анализ литературы;2)интерпретация данных;3)отбор необходимого материала;4)качественное и количественное описание топологии вычислительных сетей
Правильно организованная и умело эксплуатируемая сеть обеспечивает целый ряд преимуществ по сравнению с отдельным компьютером:
1. Распределение данных (Data Sharing). Данные в сети хранятся на центральном РС и могут быть доступны для любого РС, подключенного к сети, поэтому не надо на каждом рабочем месте хранить одну и ту же информацию.
2. Распределение ресурсов (Resource Sharing). Периферийные устройства могут быть доступны для всех пользователей сети, например: принтер, факс-модем, сканер, диски, выход в глобальную сеть.
4. Распределение программ (Software Sharing). Все пользователи сети могут иметь доступ к программам, которые были один раз централизованно установлены.
5. Электронная почта (Electronic Mail). Все пользователи сети могут передавать и принимать сообщения.
6. Обеспечение широкого диапазона решаемых задач, предъявляющих повышенные требования к производительности и объему памяти .
Локальные сети имеют некоторые особенности. Главная из них — это связь. Она должна быть быстрой, надежной и удобной. Обычно, локальные сети не выходят за пределы нескольких комнат или одного здания, поэтому длина линии связи обычно не превышает нескольких сотен метров. Они связывают между собой ограниченное количество компьютеров. Все это позволяет обеспечить качественную связь. Поэтому скорость передачи данных обычно составляет от 10 Мбит/с и выше. К тому же, требуется надежная связь, иначе при исправлении ошибок теряется выигрыш в скорости. Также необходимо небольшое время ожидания установления связи, так как оно включено в общее время передачи информации. При таких высоких требованиях в локальных сетях используются специальные технические средства.
При построении сетей ЭВМ, в т.ч. локальных, говорят об их топологии.
Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Понятие топологии относится прежде всего к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути.
Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.
Сетевая топология может быть:
• физической — описывает реальное расположение и связи между узлами сети.
• логической — описывает хождение сигнала в рамках физической топологии.

1 ФИЗИЧЕСКИЕ ТОПОЛОГИИ СЕТЕЙ

Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности.
Для сетей с селекцией данных характерны широковещательные топологии. Их основные разновидности – шина, дерево, звезда с пассивным центром.
Для сетей с маршрутизацией данных характерны последовательные («точка-точка») топологии: звезда с интеллектуальным центром, кольцо, цепочка, полносвязная, произвольная .
Базовые топологии сетей: шина, звезда и кольцо подробнее будут рассмотрены ниже.

1.1 Базовые топологии сетей

Для организации сети минимально необходимо одна линия передачи данных и по одному сетевому интерфейсу для каждого участника сети. Такая топология называется шинной (другое название - моноканал). К единственной незамкнутой линии передачи данных в произвольных точках подключаются все участники (см. Рис. 1.1)


Рис. 1.1 – Топология типа «шина»
Шина позволяет легко добавлять новых участников к сети, для прокладки линии требуется минимальное количество кабеля. Основной недостаток – любой разрыв линии делает сеть неработоспособной. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.
В топологии шина отсутствует явно выраженный центральный абонент, через который передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система).
Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.
Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.
В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе книги. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.
Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.
При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.
Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине Lпр, то полная длина шины не может превышать величины Lпр . В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.
Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов — репитеров или повторителей. Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.
Если несколько шин – сегментов соединить с помощью концентраторов или повторителей, то разрыв в одном сегменте делает неработоспособным только этот сегмент, а все остальные сегменты продолжают функционировать. Такая топология носит название «Дерево» (см. Рис.1.2)


Рис. 1.2 – Топология типа «дерево»
В звездообразной топологии принято различать два типа топологий:
1. звезда с пассивным центром;
2. звезда с интеллектуальным центром.
Звездообразная топология требует наличия специального многопортового устройства – концентратора.
Концентратор соединяется с каждым участником сети отдельной линей передачи данных. При выходе из строя одной из линий доступ к сети теряет только один участник. Однако, если откажет концентратор, работа сети станет полностью невозможной.
Среди концентраторов выделяются активные (active) и пассивные (passive). Активные концентраторы регенерируют и передают сигналы так же, как это делают репитеры. Иногда их называют многопортовыми репитерами - они имеют от 8 до 12 портов для подключения компьютеров.
Некоторые типы концентраторов являются пассивные, например монтажные панели или коммутирующие блоки. Они просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его . Пассивные концентраторы не надо подключать к источнику питания.
Гибридными (hybrid) называются концентраторы, к которым можно подключать кабели различных типов. Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы (см. Приложение 1).


Рис. 1.3 – Топология «звезда с пассивным центром»
Активное оборудование обладает информацией о структуре сети и может выбирать путь передачи данных, передавая данные только одному участнику, для которого они предназначены и не загружая остальные линии.............

ЗАКЛЮЧЕНИЕ

Топология сети указывает не только на физическое расположение компьютеров, как часто считают, но, что гораздо важнее, на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое. Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (см. рис 4.1).

Рис.4.1

В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо. Наконец, когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.
Строго говоря, при упоминании о топологии сети, мы можем подразумевать четыре совершенно разные понятия, относящиеся к различным уровням сетевой архитектуры:
• Физическая топология (географическая схема расположения компьютеров и прокладки кабелей). В этом смысле, например, пассивная звезда ничем не отличается от активной, поэтому ее нередко называют просто звездой.
• Логическая топология (структура связей, характер распространения сигналов по сети). Это наиболее правильное определение топологии.
• Топология управления обменом (принцип и последовательность передачи права на захват сети между отдельными компьютерами).
• Информационная топология (направление потоков информации, передаваемой по сети).
Например, сеть с физической и логической топологией шина может в качестве метода управления использовать эстафетную передачу права захвата сети (быть в этом смысле кольцом) и одновременно передавать всю информацию через выделенный компьютер (быть в этом смысле звездой). Или сеть с логической топологией шина может иметь физическую топологию звезда (пассивная) или дерево (пассивное).
Сеть с любой физической топологией, логической топологией, топологией управления обменом может считаться звездой в смысле информационной топологии, если она построена на основе одного сервера и нескольких клиентов, общающихся только с этим сервером. Точно так же любая сеть может быть названа шиной в информационном смысле, если она построена из компьютеров, являющихся одновременно как серверами, так и клиентами. Такая сеть будет мало чувствительна к отказам отдельных компьютеров.
Топология локальной сети является одним из самых критичных факторов, влияющих на производительность. В случае необходимости четыре основные топологии (коммутируемую, звездообразную, кольцевую и шинную) можно комбинировать произвольным образом. Возможные комбинации не ограничены рассмотренными в этой дипломной работе. Большинство современных технологий локальных сетей не только приветствуют, но даже обязывают использовать творческий подход. Очень важно разбираться в преимуществах и недостатках топологий, влияющих на производительность сети. Кроме того, следует учитывать и такие казалось бы необъективные факторы, как расположение рабочих станций в здании, пригодность кабеля, а также даже тип и способ проводки.
В конечном счете основным критерием выбора удачной топологии являются требования пользователей к производительности. Такие факторы, как стоимость, предполагаемая модернизация и ограничения существующих технологий, играют второстепенную роль.
Итак, в данной работе были рассмотрены основные топологии вычислительных сетей. Основная цель данного исследования заключалась не только в детальном рассмотрении основных топологий вычислительных сетей, но и в их сравнительной оценке, выявлении их достоинств и недостатков. Топологии различаются требуемой длиной соединительного кабеля, удобством соединения, возможностями подключения дополнительных абонентов, отказоустойчивостью, возможностями управления обменом. Топологическая структура влияет на пропускную способность и стоимость локальной сети. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. На основе проведенного исследования можно сделать выбор наиболее подходящей для определенных целей топологии вычислительной сети.
Практическая значимость проведенного исследования вполне очевидна – материалы и выводы данной работы помогут разбираться в преимуществах и недостатках топологий, влияющих на производительность сети, могут быть использованы для выбора наиболее подходящей топологии при проектировании компьютерных сетей предприятий.

ГЛОССАРИЙ

Витая пара среда передачи информации из двух перекрученных между собой электрических проводов, характеризующаяся наибольшей простотой монтажа и низкой стоимостью.

Диаметр сети путь максимальной длины в сети Ethernet, то есть путь между двумя абонентами с максимальной для данной сети задержкой распространения сигнала.

Затухание сигнала ослабление передаваемого сигнала при его прохождении по сети, доля мощности сигнала, потерянная при прохождении по кабелю. Измеряется в децибелах (дБ).

Звезда (star) вид топологии локальной сети, в котором к одному цен, тральному абоненту (концентратору) подключаются несколько периферийных абонентов; при этом все управление сетью и (или) передачу всей информации в ней осуществляет центральный абонент.

Зона конфликтов (область коллизий) множество абонентов (узлов) сети Ethernet, осуществляющих доступ к сети по методу CSMA/CD. Часть сети, на которую распространяется ситуация конфликта. Может включать в себя всю сеть.

Коаксиальный кабель — среда передачи информации, электрический кабель, состоящий из центрального проводника и металлической оплетки, разделенных диэлектриком.

Коллизия ситуация, при которой в сеть передаются несколько пакетов одновременно, что вызывает искажение информации. Называется также конфликтом или столкновением.
Кольцо (ring) вид топологии локальной сети, в котором все абоненты последовательно передают информацию друг другу по цепочке, замкнутой в кольцо.

Концентратор (hub) устройство, служащее для объединения нескольких сегментов единой сети и не преобразующее передаваемую информацию.
Конфликт, коллизия (collision) ситуация, при которой в сеть передаются несколько

Локальная сеть компьютеры или другие устройства, соединенные линиями связи для передачи информации между ними, как правило, на сравнительно небольшие расстояния.

Маркер уникальная комбинация битов или пакет специального вида, использующийся для процедуры захвата сети.

Маркерное кольцо детерминированный метод доступа в локальных сетях, альтернативный случайному методу доступа CSMA/CD и обеспечивающий, в отличие от него, отсутствие коллизий и гарантированное сверху время доставки данных в сетях при отсутствии перегрузок. Допускает организацию системы приоритетов между абонентами
Оптоволоконный кабель среда передачи информации, представляющая собой стеклянное или пластиковое волокно в оболочке, по которому распространяется световой сигнал.
Ошибки передачи искажения передаваемой информации в сетях вследствие внешних помех, некачественных кабелей, неисправностей сетевого оборудования, неправильного согласования электрических кабелей, отсутствия гальванической развязки, а также вследствие конфликтов (коллизий)передачи.
Пакет единица информации, передаваемой по сети. Могут быть короткими (порядка десятков байт и даже единиц байт), а также длинными (порядка нескольких килобайт). Включают в себя данные (необязательно), адреса и управляющие коды.

Петля замкнутый контур передачи информации в топологии сети.
Перегрузка (overload) ситуация, при которой сеть не может работать при полной нагрузке большую часть времени. В сетях, использующих метод доступа CSMA/CD, перегрузка связана с ростом числа коллизий из-за конкуренции абонентов в сети.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Барановская Т. П., Лойко В. И., Семенов М. И., Трубилин А. И. Архитектура компьютерных систем и сетей. – М.: Финансы и статистика, 2003. – 256с.
2. Березин С. Интернет у вас дома. – 2-е изд. – СПб.: VHB, 2000. – 735с.
3. Блэк Ю. Сети ЭВМ: протоколы, стандарты, интерфейсы. – М.: Мир, 1998. – 510с.
4. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. – СПб.: Питер, 2002. – 688с.
5. Бумфрей Ф. XML. Новые перспективы WWW. – М.: ДМК, 2000. – 688с.
6. Ветров C. Компьютерное «железо». – М.: СОЛОН-Р, 2002. – 559 стр.
7. Гук М. Аппаратные средства локальных сетей. Энциклопедия. – СПб.: Питер, 2000. – 576с.
8. Зима В. Безопасность глобальных сетевых технологий. – СПб.: BHV, 2001. – 320 с.
9. Ибе О. Сети и удаленный доступ. Протоколы, проблемы, решения. – М.: ДМК Пресс, 2003. – 336с.
10. Иртегов Д. В. Введение в сетевые технологии. – СПб.: BHV, 2004. – 560с.
11. Кульгин М. Практика построения компьютерных сетей. Для профессионалов. – СПб.: Питер, 2001. – 320с.
12. Мак-Квери С. Передача голосовых данных по сетям Cisco Frame Relay, ATM и IP. – М.: Диалектика, 2002. – 512с.
13. Максимов Н. В., Попов И. И. Компьютерные сети. – М.: Форум, 2007. – 448с.
14. Мизин И.А. и др. Сети коммутации пакетов. – М.: Радио и связь, 1986. – 405с.
15. Морозевич А.Н. Основы информатики: Учебное пособие для студентов вузов. – М.: Новое знание, 2001. – 544с.
16. Новиков Ю. В., Кондратенко С. В. Основы локальных сетей. Курс лекций. – СПб.: Интуит, 2005. – 360с.
17. Олифер В. Новые технологии и оборудование IP-сетей. – СПб.: BHV, 2001. – 512 с.
18. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. – СПб.: Питер, 2000. – 672с.
19. Олифер Н.А. Сетевые операционные системы: Учебное пособие для студентов вузов. – СПБ.: Питер, 2001. – 544с.
20. Поляк-Брагинский А. В. Сеть под Microsoft Windows. – СПб.: BHV, 2003. – 336с.
21. Пятибратов А.П. и др. Вычислительные системы, сети и телекоммуникации: Учебник. – М.: Финансы и статистика, 1998 г. – 266с.
22. Роберт Педжен, Тодд Леммл. Удаленный доступ. – М.: ЛОРИ, 2002. – 360с.
23. Русев Д. Технологии беспроводного доступа: Справочник. – СПб.: BHV, 2002. – 352с.
24. Симонович С., Г.Евсеев. Практическая информатика. – М.: ACT, 2000. – 479с.
25. Спортак М., Паппас Ф. Компьютерные сети и сетевые технологии. – М.: Diasoft, 2005. – 720с.
26. Таненбаум Э. Компьютерные сети. – 4-е изд. – СПб.: Питер, 2002. – 991с.
27. Флинт Д. Локальные сети ЭВМ. – М.: Финансы и статистика, 1986. –158с.
28. Фролов А.В., Фролов Г.В. Локальные сети персональных компьютеров. Использование протоколов IPX, SPX, NetBIOS. Библиотека системного программиста. – М.: Диалог-мифи, 1993. – 160с.
29. Халеби С. Принципы маршрутизации в Internet. –2 изд. – М.: Диалектика, 2001. – 448с.
30. Чуркин В.И. Проектирование вычислительных сетей: Учебное пособие. – СПб.: СПИАП, 1992. – 86с.
31. Шварц М. Сети ЭВМ. Анализ и проектирование. – М.: Радио и связь, 1981. – 334с.
32. Шиндер Д. Основы компьютерных сетей. – М.: Диалектика, 2002. –304с.



Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.