На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Акустическое сопротивление Волновое сопротивление

Информация:

Тип работы: Реферат. Добавлен: 27.06.2012. Страниц: 21. Уникальность по antiplagiat.ru: < 30%

Описание (план):


1. Акустическое сопротивление
2. Отражение и прохождение плоских волн на границе двух сред при наклонном падении
3. Основные методы измерения акустических сопротивлений
Заключение
Список литературы


Введение
При решении различного рода прикладных задач акустики, важное значение приобретают величины различных акустических сопротивлений — акустического, удельного акустического и механического.
Все эти сопротивления имеют активную и реактивную (управляемую гибкостью или массой)•составляющие.
1. Акустическое сопротивление
, (1)
где ? — звуковое давление;
— колебательная скорость в системе;
S — площадь, для которой определяют сопротивление.
Акустическое сопротивление используют при исследовании вопросов распространения звуковых волн в звукопроводах переменного сечения с поперечными размерами меньше длины волны. В этом случае сопротивление остается постоянным, так как давление вдоль канала не изменяется, а колебательная скорость изменяется обратно пропорционально площади поперечного сечения.
Удельное акустическое сопротивление, называемое иногда также волновым, определяется отношением величины звукового давления в определенной точке среды к величине колебательной скорости в этой же точке:
. (2)
Удельное акустическое сопротивление безграничной среды определяется произведением плотности на величину скорости распространения звука в среде:
. (3)
Таким образом, измерение удельного акустического сопротивления для безграничной однородной среды (практически это соответствует случаю, когда размеры образцов исследуемого материала значительно превышают длину звуковой волны) сводится ? измерению плотности среды и скорости распространения в ней звука.
Для малых размеров вещества по сравнению с длиной волны, неоднородных, имеющих сложную форму, удельное акустическое сопротивление по формуле (3) определить нельзя, кроме того, оно имеет комплексный характер, что обусловлено наличием угла сдвига фаз между звуковым давлением и колебательной скоростью.
Механическое сопротивление численно равно отношению силы F, действующей на входе колебательной системы, к вызываемой ею колебательной скорости:
. (4)
Отражение и прохождение плоских волн на границе двух сред при нормальном падении
Пусть плоская волна падает нормально на плоскую границу z=0 между двумя однородными средами. В первой среде возникает отраженная волна , а во второй — прошедшая .
Мы увидим сейчас, непосредственно произведя расчет, что отражение и прохождение всегда правильные. Отраженную и прошедшую волны можно записать в виде
, ,
где и определяются свойствами сред и не зависят от формы волны. Для гармонических волн падающую, отраженную и прошедшую волны можно записать в виде
, , .
Величины коэффициента отражения и коэффициента прохождения нужно подобрать так, чтобы были удовлетворены граничные условия. Граничных условий два: равенство давлений и равенство скоростей частиц по обе стороны границы. Со стороны первой среды берется суммарное поле падающей и отраженной волны, со стороны второй — поле прошедшей волны.
Условие равенства давлений по обе стороны границы, или, что то же, непрерывность давления при переходе через границу, реально выполняется всегда. Нарушение этого условия вызвало бы бесконечное ускорение границы, так как сколь угодно тонкий слой сколь угодно малой массы, включающий внутри себя границу, находился бы тогда под действием конечной разности давлений по обеим сторонам слоя. В результате разность давлений выровнялась бы мгновенно.
Условие равенства скоростей выражает неразрывность среды на границе: среды не должны отдаляться друг от друга или проникать взаимно друг в друга. Это требование может на практике оказаться нарушенным, например, при кавитации, когда внутри жидкости образуются разрывы (разрывы возникают легче на границе двух сред, чем внутри одной среды). Будем считать, что нарушения граничных условий не происходит. В противном случае нижеследующий расчет неприменим, а отражение и прохождение окажутся неправильными.
Скорости частиц в падающей, отраженной и прошедшей волнах даются формулами
, , .
Граничные условия можно написать так:
при , , .
Подставляя сюда соответственные выражения для давлений и скоростей частиц, найдем, сокращая на p(t):
, (5)
Число граничных условий равно числу возникающих (помимо падающей) волн — отраженной и прошедшей, так что, подбирая соответственным образом оставшиеся пока неопределенными множители и , всегда можно удовлетворить обоим граничным условиям, причем единственным образом. И это правило общее. В других акустических задачах число граничных условий может оказаться другим. Тогда возникнет и другое число волн, но оно снова равно числу граничных условий.
В исключительных случаях удается удовлетворить граничным условиям меньшим числом волн (например, коэффициент отражения может обратиться в нуль), но никогда не бывает, чтобы при данном числе граничных условий падающая волна вызывала бы возникновение большего числа различных волн: так как равным числом волн уже можно удовлетворять граничным условиям, то получилось бы, что при одной и той же падающей волне и одних тех же препятствиях могут возникнуть различные волновые поля, а это противоречит принципу причинности.
Система (5) имеет единственное решение:
, . (6)
Это — так называемые формулы Френеля (для нормального падения). Мы видим, что коэффициенты отражения и прохождения зависят только от волновых сопротивлений сред, и если эти сопротивления равны для обеих сред, то для нормального падения плоской волны среды акустически неразличи...
**************************************************************


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.