На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик получения экстракционной фосфорной кислоты дигидратным способом

Информация:

Тип работы: Курсовик. Предмет: Химия. Добавлен: 13.09.2012. Страниц: 21. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ
Введение................................................................................................................3
2 Физико-химические основы экстракционного способа получения фосфорной кислоты.................................................................................................6
3 Технологическая схема получения экстракционной фосфорной кислоты дигидратным способом.........................................................................................11
3.1 Конструкция и принцип работы двухступенчатого экстрактора...............14
4 Экология в производстве фосфорной кислоты................................................16
Заключение..........................................................................................................20
Список литературы................................................................................................22


ВВЕДЕНИЕ
Фосфорная кислота производится двумя способами [1]:
экстракционным (сернокислым) и термическим. Развитие термического способа тесно связано с развитием фосфорной промышленности. В разных странах в фосфорную кислоту перерабатывается от 70 до 90% получаемого фосфора.
Фосфорная кислота потребляется непосредственно и в виде разнообразных солей, которые широко применяются в сельском хозяйстве (удобрения, кормовые средства), в промышленности и других отраслях техники, коммунальном хозяйстве и в быту (технические соли).
Выпускаются следующие виды фосфорных кислот [1]:
ортофосфорная кислота техническая термическая техническая, получаемая сжиганием элементарного фосфора, выпускается двух сортов с содержанием не менее 73% H3PO4 (в кислоте второго сорта допускается присутствие взвешенных частиц);
фосфорная кислота пищевая с содержанием не менее 70% H3PO4;
фосфорная кислота реактивная выпускается трех сортов: химически чистая (не менее 87% H3PO4), чистая для анализа и чистая (не менее 85% H3PO4);
фосфорная кислота реактивной квалификации кристаллическая;
полифосфорная кислота, содержащая до 118% H3PO4 (суперфосфорная кислота или фосфолеум) получается преимущественно термическим способом и содержит смесь фосфорных кислот различной степени гидратации;
экстракционная техническая фосфорная кислота получается как полупродукт для производства удобрений сернокислотным («мокрым») способом в виде неупаренной (28 – 44% H3PO4) или концентрированной упаренной (70 – 75% H3PO4) кислоты;
в качестве реактивов выпускают так же пирофосфорную кислоту, в которой должно содержаться не менее 50% пироформы, и метафосфорную кислоту, содержащую не менее 60% метаформы. Реактивные сорта фосфорных кислот получают из термической фосфорной кислоты путем очистки ее химическим способом или кристаллизацией.
Как пишут авторы [1]: экстракционная и термическая фосфорные кислоты резко различают по качеству. Получаемая сернокислотным способом фосфорная кислота содержит до 15% примесей, а термическая кислота при существующем двухступенчатом способе производства – всего до 0,4% примесей.
Качество экстракционной кислоты зависит от состава исходного сырья, потому что в нее частично или полностью переходят примеси фосфатных руд, которые образуют с серной кислотой соединения, растворимые в фосфорной кислоте.
Термический способ дает возможность из любого вида сырья получать высококонцентрированную кислоту, содержащую 62-69% P2O5 (85-95% H3PO4) при незначительном количестве примесей, а так же полифосфорную кислоту, содержащую 77-86% P2O5 (106-118% H3PO4).
Рост масштабов производства фосфорной кислоты определяется как увеличением спроса со стороны традиционных потребителей, так и расширением области ее применения.
[2]: По масштабам применения фосфорной кислоты (экстракционной и термической суммарно) первое место занимает туковая промышленность, второе – солевые производства. Фосфорная кислота применяется в основном (около 85% производимого) для получения фосфорных и сложных удобрений, кормовых фосфатов, синтетических моющих и водоумягчающих средств. В металлообрабатывающей промышленности фосфорная кислота применяется в процессе фосфатирования поверхности металлов, а в текстильной – для обработки и крашения шерсти, натуральных и синтетических волокон. В технологии органических веществ фосфорную кислоту применяют в качестве катализатора. Фосфорную кислоту и ее производные применяют в процессе приготовления буровых суспензий при нефтедобыче, в производстве стекла, в фотографии (для приготовления светочувствительных эмульсий), в медицине (приготовление медикаментов, получение лекарственных средств, зубных цементов), в процессе обработки древесины (для придания огнестойкости). Производные фосфорной кислоты применяют также в пищевой промышленности (хлебопекарные порошки, приготовление плавленых сыров, в колбасном производстве и сахароварении).
В реферате будет рассмотрен экстракционный способ получения фосфорной кислоты, технологическая схема получения экстракционной фосфорной кислоты дигидратным способом, конструкция и принцип работы реактора и экология в производстве фосфорной кислоты.


2. ФИЗИКО – ХИМИЧЕСКИЕ ОСНОВЫ ЭКСТРАКЦИОННОГО СПОСОБА ПОЛУЧЕНИЯ ФОСФОРНОЙ КИСЛОТЫ.
Экстракционный метод получения фосфорной кислоты основан на разложении природных фосфатов серной кислотой по реакции [2]:
.
Одновременно происходит разложение и других примесей в исходном фосфатном сырье. К ним относятся: кальцит, доломит, сидерит, глауконит, силикаты железа и алюминия. Они также разлагаются серной кислотой по схеме [1]:
;
.
Диоксид кремния реагирует с HF, образуя SiF4:
.
Часть тетрафторида кремния выделяется в газовую фазу, а другая часть образует гексафторкремниевую кислоту, остающуюся в растворе:
.
Разложение приводит к увеличению расхода серной кислоты, а так же снижает степень извлечения P2O5 в целевой продукт вследствие образования нерастворимых фосфатов железа при концентрациях P2O5 выше 40% и - при более низких концентрациях. Выделяющийся в процессе разложения карбонатов диоксид углерода образует в экстракторах стойкую пену. Растворимые фосфаты магния, железа и алюминия снижают активность исходной фосфорной кислоты, а так же уменьшают содержание усвояемых форм P2O5 в удобрениях при последующей переработке фосфорной кислоты.
С учетом влияния примесей фосфаты с повышенным содержанием соединений железа, алюминия, магния и карбонатов непригодны для производства фосфорной кислоты. Поэтому в процессах сернокислотного разложения обычно применяют руды или концентраты, характеризующиеся массовым отношением не более 0,08.
Основой для выбора технологических параметров процессов сернокислотного разложения является выделение сульфата кальция в виде достаточно крупных, легко отделяемых и хорошо отмываемых от фосфорной кислоты кристаллов. В системе сульфат кальция может существовать в трех формах: одной безводной (ангидрита ) и двух кристаллогидратов (гемигидрата и дигидрата или гипса ). Температурные и концентрационные области кристаллизации приведенных форм определяются соотношениями давлений паров над раствором и давлений диссоциации обратимых реакций превращения гипса в геминидрат или ангидрит и гимигидрата в ангидрит. Из изотерм растворимости сульфата кальция при 80? С (рис. 3) видно, что с увеличением содержания фосфорной кислоты растворимость всех трех модификаций сначала возрастает, достигает максимума при 16-22% P2O5, а затем уменьшается. Минимальную растворимость при 80? С имеет ангидрит, являющийся равновесной твердой фазой. Метастабильный гипс в растворах, содержащих 33,3% P2O5 (точка А пересечения изотермы метастабильных кристаллогидратов), превращается непосредственно в ангидрит. В более концентрированных растворах сначала происходит конверсия гипса в менее растворимый гемигидрат, после чего последний дегидратируется до ангидрита.


Рис. 1. Изотермы растворимости сульфата кальция в фосфорной кислоте при 80? С [1]: А – ангидрит; П – полугидрат; Г – гипс.
На рис. 2 приведена политермическая диаграмма, характеризующая направление и последовательность фазовых превращений сульфата кальция в системе . Стабильными твердыми фазами в системе являются гипс (ниже кривой ab) и ангидрит (выше кривой ab). В области, расположенной над кривой cd, гемигидрат, который большей частью является первой кристаллизующейся фазой системы, переходит в ангидрит.


Рис. 2. Схема превращения кристаллогидратов сульфата кальция в растворах фосфорной кислоты [1]

В области между кривыми cd и ab стабильной формой также является ангидрит, но здесь гемигидрат переходит в ангидрит не непосредственно, а сначала оводняется до гипса. Кривая cd является множеством точек сосуществования этих метастабильных фаз при разных температурах. Аналогично кривая ab является множеством точек сосуществования стабильных гипса и ангидрита. Согласно правилу Оствальда, ниже линии ab стабильная фаза – гипс, и последовательность превращений должна быть такой, как показано на рис. 4. На практике образования ангидрита не наблюдается и гемигидрат переходит в гипс. Это объясняется кинетическими причинами, меняющими маршруты реакций, например, значительно более быстрым превращением ангидрит > гипс, чем гемигидрат > ангидрит, в данной области температур и концентраций P2O5. В других условиях скорость превращения ангидрита может быть меньшей. На скорость и маршрут взаимных переходов могут влиять и ионы примесей.
Следовательно, степень гидратации сульфата кальция, отделяемого в процессе экстракции, может не соответствовать стабильным формам и зависит от конкретных условий осуществления процесса. На рис. 3 приведена диаграмма, показывающая практическую степень гидратации сульфата кальция в зависимости от технологического режима процесса экстракции., и в первую очередь от температуры и концентрации фосфорной кислоты. Как видно из рисунка. в области ниже кривой 2 – сульфат кальция отделяется в виде гипса, выше кривой 1 – в виде ангидрита, а между этими линиями – в виде гемигидрата.



Рис. 3. Влияние температуры и содержания P2O5 в растворе на практическую гидратированность отделяемого осадка сульфата кальция[1]

В производственных условиях осадок загрязнен примесями P4O10 в виде неразложенных фосфатов, неотмытой H3PO4, сокристаллизованных фосфатов различных металлов и др. Поэтому образующиеся сульфаты кальция называют соответственно фосфогипс, фосфогемигидрат и фосфоангидрит. В зависимости от типа осаждаемого сульфата различают три способа получения экстракционной фосфорной кислоты: дигидратный, гемигидратный (полугидратный) и ангидритный, а также комбинированные: гемигидратно-дигидратный и дигидратно-гемигидратный. Наиболее распространен на практике дигидратный режим, который осуществляют при 65-80? С, получая при этом кислоту с содержанием до 30-32% P2O5.


3. ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПОЛУЧЕНИЯ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ ДИГИДРАТНЫМ СПОСОБОМ.
На рис. 4 приведена принципиальная схема получения фосфорной кислоты (28–32% P2O5) из апатитового концентрата. По этой схеме возможно получение фосфорной кислоты (20–22% P2O5) из фосфоритов.


Рис. 4. Схема получения экстракционной фосфорной кислоты дигидратным способом [7]:
1 – бункер фосфатного сырья; 2 – дозатор; 3 – двухступенчатый экстрактор; 4 – сборник серной кислоты; 5 – погружные насосы; 6 – расходомер серной кислоты; 7 – погружной насос (циркуляционный); 8 – испаритель; 9 – брызгоуловитель; 10 – конденсатор; 11 – барботажный нейтрализатор; 12 – лотки карусельного вакуум-фильтра; 13 – ресиверы (сепараторы); 14 – промежуточный сборник суспензий – после регенерации фильтровальной ткани; 15, 16, 17 – барометрические сборники: для первого (основного) фильтра (15), для оборотной фосфорной кислоты (16), для промывного фильтра (17)

Согласно схеме, в первый реактор экстрактора 3 из бункера 1 дозатором 2 непрерывно вводят апатитовый концентрат. В этот же реактор погружными насосами 5 вводят оборотную фосфорную кислоту из барометрического сборника 16 и циркуляционную суспензию после вакуум-испарительной установки 8 [кратность циркуляции (8?12):1] и серную кислоту из сборника 4. Серную кислоту возможно частично или полностью вводить во второй реактор.
Соотношение Ж:Т в суспензии в экстракторе поддерживают равным (1,7?2,7):1. Из первого реактора суспензия перетекает во второй, откуда основная часть ее погружным насосом 7 подается в вакуум-испаритель 8, представляющий собой резервуар, в котором вауум-насосом поддерживают пониженное давление. Вследствие этого поступающая в него жидкость оказывается перегретой и закипает с выпаркой части воды. Это приводит к понижению температуры на 3–5? С. Газы из вакуум-испарителя через брызгоуловитель отводят в поверхностный конденсатор 10, в котором конденсируются пары воды и улавливается часть соединений фтора. Окончательную очистку газа от соединений фтора производят в барботажном нейтрализаторе 11.
Продукционная суспензия поступает на карусельный лотковый фильтр, в котором гипс отделяется от растворов, а осадок промывается по трехфильтровальной системе.
Карусельный лотковый фильтр состоит из 24 отдельных лотков, на днищах которых уложена фильтровальная ткань (капрон, лавсан и т.п.). Лотки установлены на каретках с колесами, движущимися по круговым рельсам. С помощью двух шайб, образующих головку фильтра – подвижной, вращающейся вместе с лопатками, и неподвижной – фильтраты отсасываются в соответствующие вакуум-сборники (15, 16 и 17). После прохождения зон фильтрации и промывок каждый лоток с помощью направляющих автоматически опрокидывается для выгрузки лепешки фосфогипса. Фильтровальная ткань промывается водой и подсушивается воздухом. Затем лоток вновь принимает рабочее положение и перемещается в зону основного фильтрования. Воду, используемую для регенерации фильтровальной ткани, подают на последнюю или предпоследнюю зону промывки осадка, что сокращает потери P10O4 и позволяет создать на экстракционных установках замкнутую систему водооборота. Гигроскопическая влажность фосфогипса 15–40%. Количество фосфогипса (в пересчете на сухое вещество) составляет 1,2–1,6 т на 1 т переработанного природного фосфата. В процессе переработки апатита выход гемигидрата кальция равен 1,4; гипса 1,6 т.
Газожидкостная смесь разделяется в сепараторах 13, в которых поддерживается разрежение 65–85 кПа. Первый фильтрат Ф1 направляется в сборник готовой продукции, а часть его переливается в барометрический сборник оборотной кислоты 16, куда также поступает и второй фильтрат Ф2, полученный в процессе промывки осадка третьим фильтратом Ф3. Фильтрат Ф3 образуется при промывке осадка суспензией, получаемой в процессе регенерации фильтровальной ткани, и свежей горячей (60–70? С) водой. Промытый гипс передается с лотка в сборник 14, из которого в виде суспензии перекачивается в отстойник гипса. Содержание P2O5 в фильтратах: Ф1 – 28–32%, Ф2 – 22–25%, Ф3 – 5–10%.
В процессе получения фосфорной кислоты дигидратным способом выделение фтора в атмосферу (преимущественно в виде тетрафторида кремния) невелико – 3–5% от содержащегося в исходном сырье (около 80% переходит в целевой продукт, 15–17% – в фосфогипс). Соответственно концентрация фторидов в отводимых из экстрактора газах в зависимости от способа охлаждения и вытяжки вентилятора в пересчете на фтор составляет 0,2–2,5 г/м3.
Согласно дигидратному способу, на 1 т продукционного P2O5 расходуется 2,65–2,73 т апатита и 2,45–2,48 т 100%-ной серной кислоты. Экстракционная фосфорная кислота, полученная из апатита дигидратным способом, содержит (в %): P2O5 – 25–32; SO3 – 1,8–2,8; CaO – 0,1–0,4; Al2O3 – 0,3–0,4; Fe2O3 – 0,3–0,5; F – 1,7–2,20.

3.1 КОНСТРУКЦИЯ И ПРИНЦИП РАБОТЫ ДВУХСТУПЕНЧАТОГО ЭКСТРАКТОРА
На рис. 5 представлена конструкция двухступенчатого экстрактора.


Рис. 5. Схема смесительно-отстойного экстрактора [3]:
1 – смеситель; 2 – отстойник; а – легкая фаза; б – тяжелая фаза; в – конечный продукт (тяжелая фаза); г – конечный продукт (легкая фаза).

Как утверждают авторы [3]: смесительно-отстойные реакторы относятся к числу старейших экстракционных аппаратов. Каждая ступень смесительно-отстойного экстрактора состоит из смесителя, где жидкости перемешиваются до состояния, возможно более близкого к равновесному, и отстойника, где происходит отделение экстракта от рафината. В пределах ступени фазы движутся прямотоком друг к другу, но установка в целом, состоящая из любого числа последовательно соединенных ступеней, работает при противоточном движении фаз. Ступени аппарата располагаются в одной горизонтальной плоскости или устанавливаются в виде каскада.
Принцип работы смеситель-отстойного экстрактора виден из рис. 7. Легкая фаза а попадает в смеситель 1 первой ступени, куда параллельным током поступает тяжелая фаза из отстойника 2 следующей (второй) ступени. После смешения фазы расслаиваются в отстойнике первой ступени, из которого тяжелая фаза отводится в качестве конечного продукта в, а легкая фаза направляется во вторую ступень. Здесь она смешивается со свежей тяжелой фазой б и отделяется от нее в отстойнике 2 второй ступени. Из этого отстойника сверху удаляется легкая фаза (конечный продукт г), а снизу отводится тяжелая фаза, поступающая на смешение в первую ступень.
Перемещение и смешение жидкостей может производиться не только с помощью механических мешалок (как показано на рис.7), но и посредством насосов, инжекторов и другими способами. Точно также разделение фаз можно осуществлять не только в гравитационных отстойниках, но и в сепараторах центробежного типа, например в гидроциклонах или центрифугах.
В смесительно-отстойных экстракторах достигается интенсивное взаимодействие между фазами, причем эффективность каждой ступени может приближаться к одной теоретической ступени разделения. Эти аппараты хорошо приспособлены для обработки жидкостей при значительно отличающихся объемных расходах фаз, например при соотношениях расходов 10:1 и более.
Важным достоинством смесителей-отстойников является возможность их эффективного применения для процессов экстракции, требующих большого числа ступеней. Смесительно-отстойные экстракторы занимают большую площадь, чем колонные аппараты, но зато требуют меньшей высоты производственного помещения (при горизонтальном расположении ступеней).
Недостатком смесителей-отстойников является медленное отстаивание в них жидкостей, что нежелательно при обработке дорогостоящих, взрывоопасных или легковоспламеняющихся веществ. Кроме того, наличие мешалок с приводом в каждой ступени усложняет конструкцию аппарата и приводит к повышению капитальных затрат и эксплуатационных расходов.


4. ЭКОЛОГИЯ В ПРОИЗВОДСТВЕ ФОСФОРНОЙ КИСЛОТЫ.
В таблице 1 представлены предельно допустимые концентрации вредных веществ, образующихся в производстве фосфорной кислоты.
Таблица 1. Предельно допустимые концентрации веществ, участвующих в производстве фосфорной кислоты [4]
№ Соединение Формула Предельно допустимые концентрации, мг/м3
ПДКр.з. ПДКм.р. ПДКсс
1. Фосфорная кислота H3PO4 1,0 – –
2. Апатит Ca5(PO4)3F 6,0 – –
3. Серная кислота H2SO4 1,0 по H2SO4: 0,3;
по Н+: 0,006 по H2SO4: 0,1; по Н+: 0,002
4. Водород фтористый HF 0,5 0,02 0,005
5. Углерода двуокись СО2 30000 – –
6. Кремния диоксид SiO2 1,0 – –
7. Кремний фтористый SiF4 – 0,02 0,005
(ПДКр.з. – предельно допустимая концентрация вредного вещества в воздухе рабочей зоны; ПДКм.р. – максимальная разовая концентрация вредного вещества в воздухе населенных мест; ПДКсс – среднесуточная предельно допустимая концентрация вредного вещества в воздухе населенных мест).

Как пишут авторы [2]: пары фосфорной кислоты вызывают атрофические процессы в слизистой носа, приводящие в отдельных случаях к раздражению крыльев носа и прободению носовой перегородки. Характерны носовые кровотечения, сухость в носу и глотке, образование в носу сухих корочек, крошение зубов. Отмечается лейкоцитоз, изменение формулы крови и повышенное содержание гемоглобина.
На вскрытии отравленных животных – очаги токсической пневмонии, отек, ателектаз, увеличенная печень, иногда зернистая. Для белых мышей и белых крыс ЛД50=1,25 г/кг, ЛК50=25,5 мг/м3. В процессе длительного отравления при концентрации 10,6 мг/м3 наблюдается увеличение содержания белка в сыворотке и снижение гликогена в печени. Через месяц восстановительного периода наблюдается лишь частичная нормализация сдвигов. Ингаляция 2,3 мг/м3 патологических изменений и сдвигов не вызывает.
Ортофосфорная кислота оказывает значительное прижигающее действие, вызывает воспалительные заболевания кожи. Приводит к общетоксическим явлениям.
Поскольку анион фосфорной кислоты является «физиологическим», общее токсическое действие ее солей возможно лишь при весьма высоких дозах и производственных условиях не опасно. Напротив, имеется довольно много наблюдений относительно раздражающего и прижигающего действия кислых солей, например простого суперфосфата (отчасти из-за присутствия свободного P2O5) на слизистые оболочки и кожу, особенно если они попадают в трещины и ранки на коже.
Фосфоритоз у работников, занятых на добыче и переработке фосфоритов (исходного сырья для получения фосфорной кислоты), характеризуется поздним развитием, медленным течением, скудностью клинической симптоматики и незначительностью функциональных нарушений. У работников, контактирующих с суперфосфатом, в редких случаях могут развиваться дерматиты: сыпь на коже, жжение и зуд, отек кожи лица, жжение в глазах и слезоточение, быстро проходящее при отстранении от работы. Попадая в глаза, пыль суперфосфата вызывала сильное раздражение, конъюнктивы, отек век, помутнение роговицы, иногда даже прободение ее и выпадение радужной оболочки. У работников, занятых в производстве суперфосфата, описаны изменения костей предплечий, ряд неврологических расстройств, изменение порога обоняния, гипергидроз, неустойчивость артериального давления, изредка встречается также лабильность сердечной деятельности. Отмечены также нарушения менструальной функции у работниц.
Установлено развитие пневмокониоза (апатитоза) у работников. вдыхающих апатитовую пыль. Апатитоз характеризуется ранним возникновением (через 2–5 лет после начала работы) и медленным развитием; в III стадию не переходит. Течение благоприятное. Осложнения пневмониями и бронхоэктатической болезнью редки, присоединение туберкулеза не обнаружено.
В качестве защитных средств в производствах применяют противопылевые респираторы «Лепесток», У-2К, «Астра-2», Ф-62Ш, Р-ПК, РУ-60М и очки ПО-4. При наличии в производственных помещениях фторида водорода применяют фильтрующий противогаз марки В. В порядке профилактики пользуются защитными мазями и пастами типа силиконовых кремов, а также мазями ИЭР-2 и мазью Селисского. Для мытья применяют поверхностно-активные жидкости типа олеинсульфата и др.
Как утверждают авторы [5]: при производстве фосфорной кислоты велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения охраны окружающей среды, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т. д. Для поглощения фтористых газов используют абсорбцию водой с образованием кремнефтористоводородной кислоты. Соединения фтора могут попасть и в сточные воды на стадии промывки и газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбции на оксиде алюминия и др.
Как пишут авторы [1]: содержание в сточных водах фосфорной кислоты также строго регламентировано и не должно превышать предела растворимости основных фосфатов кальция. Фосфорная кислота, попадая со стоками в открытые водоемы, вызывает усиленное развитие растительности, что в конце концов нарушает установившееся равновесие и приводит к их зарастанию и заболачиванию. Наблюдается также загрязнение коммуникаций, градирен и других технологических аппаратов фосфатами и растительным илом. Поэтому сточные воды надо тщательно освобождать от фосфорной кислоты (и фосфатов).


ЗАКЛЮЧЕНИЕ
В заключении необходимо отметить, что накопленный опыт по очистке и концентрированию фосфорной кислоты, а так же по извлечению вредных компонентов из газовых и жидких сред в различных областях промышленности и особенно фтористых соединений при производстве фосфатов уже сейчас позволяет защитить человека и окружающий его растительный и животный мир от вредного воздействия указанных ингредиентов[6].
Как утверждают авторы [6]: мировые тенденции перераспределения использования высококачественного фосфатного сырья в сторону получения очищенных экологически безопасных фосфатных продуктов (квалифицированные (очищенные) фосфорные кислоты и чистые фосфорные соли на их основе, суперфосфорная кислота), особенно пищевого и технического качества и прогнозируемого роста объемов производства соответственно ужесточают экологические требования к технологическим процессам во избежание загрязнения окружающей среды.
Относительно адсорбционной очистки ЭФК в указанном аспекте особую значимость приобретают разработки способов регенерации и модифицирования адсорбентов, а также утилизация как самих отработанных контактов, так и использование, обезвреживание или размещение образуемых при этом отходов, в частности фтористых соединений и органических примесей [6].
Комплексная переработка фосфатного сырья на вышеуказанные целевые продукты на территории Российской Федерации должна осуществляться в соответствии с последними федеральными и региональными законами и подзаконными актами в области охраны окружающей среды и новыми нормативными документами воздействия на нее [6].
В настоящее время появились новые тенденции в развитии производства ЭФК, связанные с модернизацией и разработкой новых и более совершенных методов очистки, например органическими растворителями (метод жидкостной экстракции).
Как утверждают авторы [6]: в ОАО «НИУиФ» разработана новая технология получения высокочистой ортофосфорной кислоты из неочищенной и очищенной трибутилфосфатом ЭФК реактивных марок.
[6]: По оценке Международной Ассоциации производителей удобрений (IFA), мировое производство фосфорных концентратов в 2004 г. увеличилось на 5% и составило 32,6 млн. т P2O5, в то время как их продажи увеличились на 11% и составили 4,9 млн. т P2O5. Главный вклад в этот рост внесли США, Россия, Тунис, Египет и Китай. Мировой экспорт фосфорных концентратов вырос по сравнению с 2003 г. на 4%. В период 2004–2009 гг. мировые мощности по производству фосфорной кислоты увеличатся на 12% (с 41,8 до 47 на 5,2 млн. т P2O5). Мировое производство ЭФК составило в 2005 году 42,4 млн. т P2O5 и по прогнозам увеличится на 5,7 млн. т P2O5 к 2010 году. Наибольшую долю роста обеспечит Китай.
В течении ближайших четырех–пяти лет несколько новых проектов по производству фосфорной продукции будут завершены в Южной Америке (Бразилия), в Северо-Западной Африке (Алжир, Марокко) и Азии (Вьетнам)[6].


СПИСОК ЛИТЕРАТУРЫ
1. Постников Н. Н.. Термическая фосфорная кислота: химия и технология / Н. Н. Постников. — М.: Химия, 1970. — 304 с.
2. Ахметов Т. Г., Порфирьва Р. Т., Гайсин Л. Г. и др. Химическая технология неорганических веществ: В 2 кн. Кн. 1 – М.: Высш. шк., 2002. – 668 с.
3. Касаткин А. Г. Основные процессы и аппараты химической технологии – М.: ООО ИД «Альянс», 2008. – 753 с.
4. Беспамятнов Г. П., Богушевская К. К., Беспамятнова А. В. и др. Предельно допустимые концентрации вредных веществ в воздухе и воде. «Химия», 1975. – 456 с.
5. Кутепов А. М. и др. Общая химическая технология – М.: ИКЦ «Академкнига», 2003. – 528 с.
6. Кочетков, С.П., Смирнов, Н.Н., Ильин, А.П. Концентрирование и очистка экстракционной фосфорной кислоты: монография / ГОУВПО Иван. гос. хим.-технол. ун-т.- Иваново, 2007.
7. Интернет ресурсы: www.xumuk.ru.




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.