На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Задачи по статистике. Имеются следующие данные за год по заводам одной промышленной компании: На основании приведенных данных составьте групповую таблицу зависимости выработки на одного рабочего от величины заводов по числу рабочих. Число групп три.

Информация:

Тип работы: Контрольная. Предмет: Статистика. Добавлен: 26.09.2014. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Задача 3
Имеются следующие данные за год по заводам одной промышленной компании:
Завод Среднее число рабочих, чел. Основные фонды, млн руб. Продукция, млн руб. Завод Среднее число рабочих, чел. Основные фонды, млн руб. Продукция, млн руб.
1 700 250 300 9 1400 1000 1600
2 800 300 360 10 1490 1250 1800
3 750 280 320 11 1600 1600 2250
4 900 400 600 12 1550 1500 2100
5 980 500 800 13 1800 1900 2700
6 1200 750 1250 14 1700 1750 2500
7 1100 700 1000 15 1900 2100 3000
8 1300 900 1500
На основании приведенных данных составьте групповую таблицу зависимости выработки на одного рабочего от величины заводов по числу рабочих. Число групп – три.
Решение:
Выработка на одного работающего количества произведенной продукции:
В=К/( Ч)


Выработка для каждого завода:
Завод Среднее число рабочих, чел. Основные фонды, млн руб. Продукция, млн руб. Выработка на одного работающего
1 700 250 300 0,43
2 800 300 360 0,45
3 750 280 320 0,43
4 900 400 600 0,67
5 980 500 800 0,82
6 1200 750 1250 1,04
7 1100 700 1000 0,91
8 1300 900 1500 1,15
9 1400 1000 1600 1,14
10 1490 1250 1800 1,21
11 1600 1600 2250 1,41
12 1550 1500 2100 1,35
13 1800 1900 2700 1,50
14 1700 1750 2500 1,47
15 1900 2100 3000 1,58

Величина интервала: i=(Xmax-Xmin)/( n) , где X max и X min – максимальное и минимальное значения признака т.е. число рабочих, а n – число групп. i=(1900-700)/( 3)=400 - получили 3 группы:
1гр. - от 700 до 1100 рабочих
2 гр. – от 1100 до 1500 рабочих
3 гр. – от1500 до 1900 рабочих
Рабочая таблица:
Номер группы Номера заводов Среднее число рабочих, чел. Основные фонды, млн руб. Продукция, млн руб. Выработка на одного рабочего
1 1 700 250 300 0,43
3 750 280 320 0,43
2 800 300 360 0,45
4 900 400 600 0,67
5 980 500 800 0,82
7 1100 700 1000 0,91
ИТОГО 6 2430 3380 3,70
2 6 1200 750 1250 1,04
8 1300 900 1500 1,15
9 1400 1000 1600 1,14
10 1490 1250 1800 1,21
ИТОГО 4 3900 6150 4,55
3 12 1550 1500 2100 1,35
11 1600 1600 2250 1,41
14 1700 1750 2500 1,47
13 1800 1900 2700 1,50
15 1900 2100 3000 1,58
ИТОГО 5 8850 8200 4,55

По данным рабочей таблицы составляем аналитическую группировку:
Номер группы Количество заводов Группы заводов по числу рабочих Основные фонды в среднем на один завод, млн руб. Продукция в среднем на один завод, млн руб. Выработка на одного рабочего в среднем на один завод
1 6 700-1100 405 563,33 0,62
2 4 1100-1500 975 1537,50 1,14
3 5 1500-1900 1770 2510 1,46

Вывод: С увеличением количества рабочих увеличиваются основные фонды и выработка на одного рабочего.

Задача 24
Определите среднюю выработку рабочего за смену и среднеквадратическое отклонение, моду и медиану, используя следующие данные:
Выработано деталей рабочим в смену, шт. 23 20 32 24
Число рабочих с данной выработкой, чел. 38 18 10 34

Решение:
Средняя выработка рабочего за смену ?X=(?-XiFi)/(?-fi)
?X=(23*38+20*18+32*10+24*34)/(38+18+10+34)=2370/100=23,7
Среднеквадратичное отклонение ?=v((?-(Xi-?X)^2 )/(?-fi))
?=v(((23-23.7)^(2 )*38+(20-23.7)^(2 )*18+(32-23.7)^2*10+(24-23.7)^2*34)/(38+18+10+34))=v(957/100)=3,09
Мода и медиана:
Упорядочим последовательность по выработке
Выработано деталей рабочим в смену, шт. 20 23 24 32
Число рабочих с данной выработкой, чел. 18 38 34 10

Средняя из двух величин (по формуле средней арифметической)
Me = (23+24)/2=23,5
Мода-значение признака (варианта), которое чаще всего встречается в данной совокупности, в данном случае это выработка деталей 23 штуки.
Ответ: Медиана равна Me=23,5 ; Мода равна Mo=23


Задача 17
Вычислите среднемесячный % брака по заводу за второй квартал по данным:
Показатель апрель май июнь
Выпуск годной продукции, тыс.руб. 5000 6000 6500
Брак, в % к годной продукции 1,5 1,2 1,0

Решение:
Среднемесячный процент брака =(?-M)/(?-M/X) ; М=х*f; f = М/Х
?X=(5000*0,015+6000*0,012+6500*0,01)/(5000+6000+6500)*100=1,2%
Ответ: Среднемесячный процент брака за второй квартал равен 1,2%

Задача 45
Вычислите коэффициент корреляции на основе следующих данных об объемах выпуска продукции и общих затратах на производство этой продукции:
Завод Объем продукции, т Затраты на производство, тыс. руб. Завод Объем продукции, т Затраты на производство, тыс. руб.
1 2000 400 6 2800 545
2 2200 435 7 3000 582
3 2400 470 8 3100 600
4 2500 490 9 3150 603
5 2600 508 10 3250 617


Решение:
Коэффициент корреляции:
r_n=(?_(i-1)^n-(X_i-?X)(Y_i-?Y) )/( v(?_(i-1)^n-?(X_1-?X)^2 ?) v(?_(i-1)^n-?(Y_1-?Y)^2 ?));
Рабочая таблица:
Завод Объем продукции, т Затраты на производство, тыс. руб.
(X-?X)*(Y-?Y) (X-?X)^2 (Y-?Y)^2
1 2000 400 87500 490000 15625
2 2200 435 45000 250000 8100
3 2400 470 16500 90000 3025
4 2500 490 7000 40000 1225
5 2600 508 1700 10000 289
6 2800 545 2000 10000 400
7 3000 582 17100 90000 3249
8 3100 600 30000 160000 5625
9 3150 603 35100 202500 6084
10 3250 617 50600 302500 8464
Среднее 2700 525
Сумма 292500 1645000 52086

r_n=292500/( v(1645000*52086) )=0,999
Вывод:
Коэффициент корреляции близок к единице, это говорит о достаточно тесной линейной связи.
Задача 10
Планом промышленного предприятия предусматривалось снижение затрат на 1 руб. товарной продукции на 4 %, фактически затраты возросли на 2%. Вычислите относительную величину выполнения плана.
Решение:
ОВВП= Рф/Рпл*100%
Относительная велич. вып. пл. = 1,02/0,96*100%-100%=6,25 %
Ответ: План по снижению затрат не выполнен, так как фактический уровень превысил запланированный на 6,25%




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.