На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат экзаменационные работы по химии за 2 курс

Информация:

Тип работы: Реферат. Предмет: Химия. Добавлен: 10.7.2013. Сдан: 2012. Страниц: 33. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Билет 1
1. Углеводороды; Значения основные химические свойства;
2. Физические свойства нефти
3. 2HCl+Mg=
Ответ:
1. Углеводоро?ды - органические соединения, состоящие исключительно из атомов углерода и водорода. Углеводороды считаются базовыми соединениями органической химии, все остальные органические соединения рассматривают как их производные.
Поскольку углерод имеет четыре валентных электрона, а водород - один, простейший углеводород - метан (CH4).
При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода. В зависимости от топологии строения углеродного скелета углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углерод-углеродных связей углеводороды подразделяют на предельные (алканы) и непредельные (алкены, алкины, диены). Циклические углеводороды разделяют на алициклические и ароматические.
Химические свойства:
Углеводороды ряда метана при обыкновенной температуре химически весьма инертны, почему они и получили название парафинов (от латинских слов parum affinis - обладающий малым сродством). С большинством химических реагентов эти углеводороды в указанных условиях или вовсе не реагируют, или реагируют чрезвычайно медленно. При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы и группы (реакции металеп-cuu). Эти реакции ведут к получению производных соответствующих углеводородов.
К реакциям присоединения парафины вообще неспособны в силу насыщенности всех связей атомов углерода.
Значение углеводородов заключается, в то что, что все остальные, более сложные по составу органические вещества являются производными этих простейших соединений и могут быть выведены из этих углеводородов заменой атомов водорода в их молекулах на другие атомы или атомные группы. В свою очередь все другие вещества путем химических реакций могут быть превращены в углеводороды. Таким образом, углеводороды служат остовом, основой всех прочих органических веществ.

2. Нефть - жидкость от светло-коричневого (почти бесцветная) до тёмно-бурого (почти чёрного) цвета (хотя бывают образцы даже изумрудно-зелёной нефти). Средняя молекулярная масса 220-300 г/моль (редко 450-470). Плотность 0,65-1,05 (обычно 0,82-0,95) г/см?; нефть, плотность которой ниже 0,83, называется лёгкой, 0,831-0,860 - средней, выше 0,860 - тяжёлой Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов (обычно >28 °C, реже ?100 °C в случае тяжёлых не?фтей) и фракционным составом - выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450-500 °C (выкипает ~ 80 % объёма пробы), реже 560-580 °C (90-95 %). Температура кристаллизации от ?60 до + 30 °C; зависит преимущественно от содержания в нефти парафина (чем его больше, тем температура кристаллизации выше) и лёгких фракций (чем их больше, тем эта температура ниже). Вязкость изменяется в широких пределах (от 1,98 до 265,90 мм?/с для различных не?фтей, добываемых в России), определяется фракционным составом нефти и её температурой (чем она выше и больше количество лёгких фракций, тем ниже вязкость), а также содержанием смолисто-асфальтеновых веществ (чем их больше, тем вязкость выше). Удельная теплоёмкость 1,7-2,1 кДж/(кг?К); удельная теплота сгорания (низшая) 43,7-46,2 МДж/кг; диэлектрическая проницаемость 2,0-2,5; электрическая проводимость [удельная] от 2?10?10 до 0,3?10?18 Ом?1?см?1.
Нефть - легковоспламеняющаяся жидкость; температура вспышки от ?35 до +121 °C (зависит от фракционного состава и содержания в ней растворённых газов). Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.

3. 2HCl+Mg=H2Mg+Cl2
Билет 2
1. Экологические бедствия, вызванные утечкой нефти;
2. Алканы, свойства и значения;
3. Na2SO4+HF=?
Ответы:
1. Разлившаяся нефть зачастую приводит к колоссальным последствиям для окружающей среды, как к немедленным, так и к длительным. Последствия разлива нефти ощущаются десятилетиями.
Загрязнение прибрежных зон, болот и нарушение функционирования морских экосистем
Нефть, пролитая из поврежденных трубопроводов, танкеров и добывающих установок, губит все живое к чему «прикасается». Нефть разносится по поверхности воды на многие километры, и когда достигает береговой линии, то намертво цепляется за каждый камень и песчинку на пляже. Из-за загрязнения нефтью гибнет вся растительность. Например, кишащие жизнью и отличающиеся буйной растительностью мангровые болота навсегда исчезают из-за розлива нефти. Пораженные районы становятся непригодными для обитания диких животных.
Нефть коварна не только тем, что может растягиваться черной пленкой по поверхности воды, но также некоторые ее частицы способны смешиваться с водой и оседать на дно, тем самым, убивая чувствительную морскую экосистему. Многие морские организмы и рыбы погибают или оказываются зараженными.
Так, например, в 1989 году произошла утечка огромного количества нефти на Аляске, были потрачены миллионы долларов на ликвидацию последствий, но анализы проведенные в 2007 году показали, что 26 тысяч галлонов нефти все еще находится в песке вдоль береговой линии. Естественно на этих территориях все еще не восстановились популяции погибших диких животных.
Ученые установили, что остаточная нефть (остатки нефти после ликвидации) исчезает со скоростью 4 % в год от общей массы нефти. Представьте, сколько времени потребуется для полного восстановления пострадавших районов.
От разлитой нефти гибнут птицы
Птица, покрытая пятнами нефти, сейчас является символом экологического бедствия, вызванного разливом нефти. Утечка нефти, даже небольших объемов может стать смертельным приговором для огромного количества птиц. Некоторые пернатые могут почувствовать опасность и перелететь на безопасное место, например кулики. Но есть птицы, которые живут вблизи воды и питаются исключительно рыбой, покинуть водные просторы для них означает смерть.
Разлив нефти приносит большой ущерб гнездованию, что влечет серьезные последствия для многих видов. Недавний разлив нефти в Мексиканском заливе произошёл в период спаривания и гнездования птиц. Уже сейчас ученые утверждают, что последствия трагедии будут ощущаться несколько десятилетий. Разлив нефти влияет и на миграцию, путем заражения привычных мест остановки перелетных птиц.
Даже небольшое количество нефти на оперении птиц приводит к полной неспособности летать, а также нарушается гидроизоляционная способность, что приводит к переохлаждению и перегреву. Птицы отчаянно пытаются очиститься, тем самым часть нефти оказывается проглоченной, что приводит к отравлению и смерти. Каждый разлив нефти уносит жизни 500 тысяч разнообразных птиц.
От разлитой нефти гибнут морские млекопитающие
Разлитая нефть очень часто приводит к гибели таких морских животных, как киты, дельфины, тюлени и морские выдры. Иногда нефть забивает воздушное отверстие китов, что нарушает нормальное дыхание и способность общаться. Мех выдр, пропитанный нефтью, теряет свои гидроизоляционные способности, что приводит к гипотермии.
Даже если животным удалось вовремя покинуть зараженную территорию, всегда есть риск, что в их рацион питания попадут зараженные организмы. Ученые отметили, что животные, побывавшие в зараженных регионах, приносили больное потомство, и такая тенденция может проявляться в нескольких поколениях.
Разлив нефти приводит к гибели рыбы
Нефть является смертельной для рыб, молюсков и других морских обитателей, особенно быстро погибают икра и личинки. Во время разлива нефти на Аляске в 1989 году, в первую очередь погибли миллионы особей молюсков и креветок, миллиарды лосося, сельди и их икры. Популяция этих видов в том регионе до сих пор не восстановилась. А когда- то эти места были промысловыми и славились богатым уловом.
Не зависимо от того сколько галлонов нефти попало в океан, ущерб всегда колоссален для окружающей среды. Самое страшное, что пораженные территории остаются безжизненными многие десятки лет.

2. . Алка?ны (также насыщенные углеводороды, парафины, алифатические соединения) - ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2. Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации - все 4 гибридные орбитали атома С равны по форме и энергии, 4 электронных облака направлены в вершины тетраэдра под углами 109°28. За счёт одинарных связей между атомами С возможно свободное вращение вокруг углеродной связи. Тип углеродной связи - ?-связи, связи малополярны и плохо поляризуемы. Длина углеродной связи - 0,154 нм. Простейшим представителем класса является метан (CH4).
Из тетради: Алканы - это ациклические углеводороды в молекулах которых атомы связаны одинарными связями, которые соответствуют общей формуле: СnH2n+2
Физические свойства
Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
При нормальных условиях неразветвлённые алканы с CH4 до C4H10 - газы; с C5H12 до C13H28 - жидкости; после C14H30 - твёрдые вещества.
Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н-пентан - жидкость, а неопентан - газ.
Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.
Химические свойства
Алканы имеют низкую химическую активность. Это объясняется тем, что единичные связи C-H и C-C относительно прочны и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С-Н малополярны, оба вида связей малополяризуемы и относятся к ?-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов.

3. Na2SO4+2HF=H2SO4+2NaF

Билет 3
1. Теория Бутлерова;
2. Типы химических реакций в органической химии;
3. Как определить что в яблочном соке присутствует витамин С?
Ответы:
Теория Бутлерова:
Атомы в молекулах вещества соединены согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом образую различные цепи.
Свойства вещества определяется не только их качественным и количественном составом, но и порядком соединения атомов в молекуле, то есть химическим составом.
Свойства органических соединений зависит не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

2. Типы химических реакций в органической химии: многообразие органических реакций сводится к пяти типам: замещения, присоединения, отщепления, перегруппировки и окислительно-восстановительные.
Реакции замещения
В реакциях замещения водород или функциональная группа замещается на неводородный атом или другую функциональную группу:


Реакции присоединения
Реакции присоединения сопровождаются разрывом кратных связей:
Реакции отщепления
Реакции отщепления (элиминирования) приводят к образованию непредельных углеводородов:
Реакции перегруппировки
Реакции перегруппировки (изомеризации) приводят к образованию изомеров:
Реакции окисления и восстановления
Реакции окисления и восстановления протекают с изменением степени окисления углеродного атома: Полное окисление (сгорание)
Частичное окисление

Типы химических реакций в не органической химии::
Реакции соединения
При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:
A + B + C = D
Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.
Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:
СаСО3 + СО2 + Н2О = Са(НСО3)2,
так и относиться к числу окислительно-восстановительных:
2FеСl2 + Сl2 = 2FеСl3.
2. Реакции разложения
Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:
А = В + С + D.
Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.
Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:
to
CuSO4 5H2O = CuSO4 + 5H2O

to
Cu(OH)2 = CuO + H2O

to
H2SiO3 = SiO2 + H2O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления:
to
2SO3 = 2SO2 + O2.

to
4HNO3 = 2H2O + 4NO2O + O2O.
2AgNO3 = 2Ag + 2NO2 + O2,
(NH4)2Cr2O7 = Cr2O3 + N2 + 4H2O.
Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.
Реакции разложения в органической химии носят название крекинга:
С18H38 = С9H18 + С9H20,
или дегидрирования
C4H10 = C4H6 + 2H2.
3. Реакции замещения
При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:
А + ВС = АВ + С.
Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:
2Аl + Fe2O3 = 2Fе + Аl2О3,
Zn + 2НСl = ZnСl2 + Н2,
2КВr + Сl2 = 2КСl + Вr2,
2КСlO3 + l2 = 2KlO3 + Сl2.
Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:
СаСО3+ SiO2 = СаSiO3 + СО2,
Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5,
Иногда эти реакции рассматривают как реакции обмена:
СН4 + Сl2 = СН3Сl + НСl.
4. Реакции обмена
Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:
АВ + СD = АD + СВ.
Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями:
ZnO + Н2SО4 = ZnSО4 + Н2О,
AgNО3 + КВr = АgВr + КNО3,
СrСl3 + ЗNаОН = Сr(ОН)3 + ЗNаСl.
Частный случай этих реакций обмена - реакции нейтрализации:
НСl + КОН = КСl + Н2О.
Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:
NаНСО3 + НСl = NаСl + Н2О + СО2?,
Са(НСО3)2 + Са(ОН)2 = 2СаСО3? + 2Н2О,
СН3СООNа + Н3РО4 = СН3СООН + NаН2РО4.
5. Реакции переноса.
При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:
АВ + ВС = А + В2С,
А2В + 2СВ2 = АСВ2 +АСВ3.
Например:
2AgCl + SnCl2 = 2Ag + SnCl4,
H2O + 2NO2 = HNO2 + HNO3.

3. Как определить что в яблочном соке присутствует витамин С?
Мы налили в пробирку 2 мл сока и добавили воды на 10 мл. Затем налили немного крахмального клейстера (1г крахмала на стакан кипятка). Далее по каплям мы добавили 5%-ный раствор йода до появления устойчивого синего окрашивания, не исчезающего 10-15 секунд. Техника определения основана на том, что молекулы аскорбиновой кислоты легко окисляются йодом. Как только йод окислит всю аскорбиновую кислоту, следующая же капля, прореагировав с крахмалом, окрасит раствор в синий цвет.
Билет 4
1. Основы номенклатуры органических соединений;
2. Алкены; Свойства и значения;
3. 5Метил гексен-2;
Ответы:
1. Основы номенклатуры органических соединений:
А) Определяют старшую характеристическую группу и указывают ее обозначение в суффиксе. Определяют родоначальную структуру по следующим критериям в порядке падения старшинства: а) содержит старшую характеристическую группу; б) содержит максимальное число характеристических групп; в) содержит максимальное число кратных связей; г) имеет максимальную длину. Родоначальную структуру обозначают в корне названия в соответствии с длиной цепи или размером цикла: С1 - "мет”, С2 - "эт”, С3 - "проп”, С4 - "бут”, С5 и далее - корни греческих числительных.
Б) Определяют степень насыщенности и отражают ее в суффиксе: "ан” - нет кратных связей, "ен” - двойная связь, "ин” - тройная связь.
В) Устанавливают остальные заместители (углеводородные радикалы и младшие характеристические группы) и перечисляют их названия в префиксе в алфавитном порядке.
Г) Устанавливают умножающие префиксы - "ди”, "три”, "тетра”, указывающие число одинаковых структурных элементов (при перечислении заместителей в алфавитном порядке не учитываются).
Д) Проводят нумерацию родоначальной структуры так, чтобы старшая характеристическая группа имела наименьший порядковый номер. Локанты (цифры) ставят перед названием родоначальной структуры, перед префиксами и перед суффиксами (иногда после суффиксов).

2. Алке?ны (олефины, этиленовые углеводороды) - ациклические непредельные углеводороды, содержащие одну двойную связь между атомами углерода, образующие гомологический ряд с общей формулой CnH2n. Атомы углерода при двойной связи находятся в состоянии sp? гибридизации, и имеют валентный угол 120°. Простейшим алкеном является этилен (C2H4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.
Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил». Тривиальные названия: CH2=CH- «винил», CH2=CH-CH2- «аллил».
Физические свойства:
· Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.
· При нормальных условиях алкены с C2H4 до C4H8 - газы; с C5H10 до C17H34 - жидкости, после C18H36 - твёрдые тела. Алкены не растворяются в воде , но хорошо растворяются в органических растворителях .
Химические свойства:
Алкены химически активны. Их химические свойства во многом определяются наличием двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения и реакции радикального присоединения . Реакции нуклеофильного присоединения обычно требуют наличие сильного нуклеофила и для алкенов не типичны.
Особенностью алкенов являются также реакции циклоприсоединения и метатезиса .
Алкены легко вступают в реакции окисления , гидрируются сильными восстановителями или водородом под действием катализаторов до алканов , а также способны к аллильному радикальному замещению .

3. 5Метил гексен-2;

Билет 5
1 Получение алкенов;
2 Изомерия и ее виды;
3 Определить цис-бутен и транс-бутен-2
Ответы:
1. ПОЛУЧЕНИЕ АЛКЕНОВ
В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля. В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr2О3). Например:
® H2C==CH-CH2-CH3
H3C-CH2-CH2-CH3 ® -H2 бутен-1
бутан ® H3C-CH==CH-CH3
бутен-2
Из лабораторных способов получения можно отметить следующие:
1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:
H2C-CH2 ® H2C==CH2 + KCl + H2O
| |
Cl H K-OH
2. Гидрирование ацетилена в присутствии катализатора (Pd):
H-CєєC-H + H2 ® H2C==CH2
3. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3:
Н2С-СН2 ® Н2С==СН2 + Н2О
| |
H OH
этиловый
спирт
В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):
H OH
| |
H3C-C-CH-CH3 ® H3C-C==CH-CH3 + H2O
| |
CH3 CH3
3-метилбутанол-2 2-метилбутен-2

2. Изомерия (от др.-греч. ???? - «равный», и ????? - «доля, часть») - явление, заключающееся в существовании химических соединений (изомеров), одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Виды изомерии:
1. Структурная изомерия
Структурная изомерия - результат различий в химическом строении. К этому типу относят:
Изомерия углеводородной цепи (углеродного скелета)

Изомерия углеродного скелета, обусловленная различным порядком связи атомов углерода. Простейший пример - бутан СН3-СН2-СН2-СН3 и изобутан (СН3)3СН. Другие примеры: антрацен и фенантрен (формулы I и II, соответственно), циклобутан и метилциклопропан (III и IV).
Валентная изомерия

Валентная изомерия - особый вид структурной изомерии, при которой изомеры можно перевести друг в друга лишь за счёт перераспределения связей. Например, валентными изомерами бензола (V) являются бицикло[2.2.0]гекса-2,5-диен (VI, «бензол Дьюара»), призман (VII, «бензал Ладенбурга»), бензвален (VIII).
Изомерия функциональной группы
Различается характером функциональной группы; например, этанол (CH3-CH2-OH) и диметиловый эфир (CH3-O-CH3).
Изомерия положения
Тип структурной изомерии, характеризующийся различием положения одинаковых функциональных групп или кратных связей при одинаковом углеродном скелете. Пример: 2-хлорбутановая кислота и 4-хлорбутановая кислота.
2. Пространственная изомерия (стереоизомерия)
Пространственная изомерия (стереоизомерия) возникает в результате различий в пространственной конфигурации молекул, имеющих одинаковое химическое строение. Для обозначения пространственных изомеров разных типов разработана стереохимическая номенклатура, собранная в разделе E номенклатурных правил ИЮПАК по химии
Этот тип изомерии подразделяют на энантиомерию (оптическую изомерию) и диастереомерию.
Энантиомерия (оптическая изомерия)

Энантиомерами (оптическими изомерами, зеркальными изомерами) являются пары оптических антиподов - веществ, характеризующихся противоположными по знаку и одинаковыми по величине вращениями плоскости поляризации света при идентичности всех других физических и химических свойств (за исключением реакций с другими оптически активными веществами и физических свойств в хиральной среде). Необходимая и достаточная причина возникновения оптических антиподов - принадлежность молекулы к одной из следующих точечных групп симметрии: Cn, Dn, T, O или I (хиральность). Чаще всего речь идет об асимметрическом атоме углерода, то есть об атоме, связанном с четырьмя разными заместителями.
Асимметрическими могут быть и другие атомы, например атомы кремния, азота, фосфора, серы. Наличие асимметрического атома - не единственная причина энантиомерии. Так, имеют оптические антиподы производные адамантана (IX), ферроцена (X), 1,3-дифенилаллена (XI), 6,6-динитро-2,2-дифеновой кислоты (XII). Причина оптической активности последнего соединения - атропоизомерия, то есть пространственная изомерия, вызванная отсутствием вращения вокруг простой связи. Энантиомерия также проявляется в спиральных конформациях белков, нуклеиновых кислот, в гексагелицене (XIII).
Диастереомерия
Диастереомерными считают любые комбинации пространственных изомеров, не составляющие пару оптических антиподов. Различают ?- и ?-диастереомеры.
?-диастереомерия
?-диастереомеры отличаются друг от друга конфигурацией части имеющихся в них элементов хиральности. Так, диастереомерами являются (+)-винная кислота и мезо-винная кислота, D-глюкоза и D-манноза, например:

?-диастереомерия (геометрическая изомерия)
?-диастереомеры, называемые также геометрическими изомерами, отличаются друг от друга различным пространственным расположением заместителей относительно плоскости двойной связи (чаще всего С=С и С=N) или цикла. К ним относятся, например, малеиновая и фумаровая кислоты (формулы XIV и XV соответственно), (Е)- и (Z)-бензальдоксимы (XVI и XVII), цис- и транс-1,2-диметилциклопентаны (XVIII и XIX).

3. у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную - транс-изомерами Билет 6
1. Природные источники углеводородов;
2. Крекенг, Разновидности;
3. С4Н10+ С4Н8=
С2Н6+ С2Н4=
Ответы:
1. Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Залежи сырой нефти и газа возникли 100-200 миллионов лет назад из микроскопических морских растений и животных, которые оказались включенными в осадочные породы, образовавшиеся на дне моря, В отличие от этого уголь и торф начали образовываться 340 миллионов
лет назад из растений, произраставших на суше.
Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефтеносных слоях, расположенных между слоями горных пород. Термин «природный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими
производителями природного газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран.
Природный газ состоит главным образом из метана.
Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной - от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.
Состав природного газа

|Компоненты |Формула |Содержание,% |
|Метан |СН4 |88-95 |
|Этан |С2Н6 |3-8 |
|Пропан |С3Н8 |0,7-2,0 |
|Бутан |С4Н10 |0,2-0,7 |
|Пентан |С5Н12 |0,03-0,5 |
|Диоксид углерода |СО2 |0,6-2,0 |
|Азот |N2 |0,3-3,0 |
|Гелий |Не |0,01-0,5 |

2. Кре?кинг (англ. cracking, расщепление) - высокотемпературная переработка нефти и её фракций с целью получения, как правило, продуктов меньшей молекулярной массы - моторных топлив, смазочных масел и т. п., а также сырья для химической и нефтехимической промышленности. Крекинг протекает с разрывом связей С-С и образованием свободных радикалов или карбанионов. Одновременно с разрывом связей С-С происходит дегидрирование, изомеризация, полимеризация и конденсация как промежуточных, так и исходных веществ. В результате последних двух процессов образуются т. н. крекинг-остаток (фракция с температурой кипения более 350 °C) и нефтяной кокс.
Первая в мире промышленная установка непрерывного термического крекинга нефти была создана и запатентована инженером В. Г. Шуховым и его помощником С. П. Гавриловым в 1891 году (патент Российской империи № 12926 от 27 ноября 1891 года). Была сделана экспериментальная установка. Научные и инженерные решения В. Г. Шухова повторены У. Бартоном при сооружении первой промышленной установки в США в 1915-1918 годах. Первые отечественные промышленные установки крекинга построены В. Г. Шуховым в 1934 году на заводе «Советский крекинг» в Баку.
Крекинг проводят нагреванием нефтяного сырья или одновременным воздействием на него высокой температуры и катализаторов.
В первом случае процесс применяют для получения бензинов (низкооктановые компоненты автомобильных топлив) и газойлевых (компоненты флотских мазутов, газотурбинных и печных топлив) фракций, высокоароматизированного нефтяного сырья в производстве технического углерода (сажи), а также альфа-олефинов (термический крекинг); котельных, а также автомобильных и дизельных топлив (висбрекинг); нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций; этилена, пропилена, а также ароматических углеводородов (пиролиз нефтяного сырья).
Во втором случае процесс используют для получения базовых компонентов высокооктановых бензинов, газойлей, углеводородных газов (каталитический крекинг); бензиновых фракций, реактивных и дизельных топлив, нефтяных масел, а также сырья для процессов пиролиза нефтяных фракций и каталитического риформинга (гидрокрекинг).
Используют также др. виды пиролитического расщепления сырья, например процесс получения этилена и ацетилена действием электрического разряда в метане (электрокрекинг), осуществляемый при 1000-1300 °C и 0,14 МПа в течение 0,01-0,1 с.
Крекинг используют для повышения октанового числа бензина (увеличения массовой доли C8H18).
В ходе каталитического крекинга протекают также процессы изомеризации алканов.

3. С4Н10+ С4Н8= С8Н18
С2Н6+ С2Н4= С4Н10
Билет 7
1. Алкины. Общая формула, свойства;
2. Попутный нефтяной газ, основные компоненты, их применение;
3. Бутин-2
Ответы:
1. Алки?ны (иначе ацетиленовые углеводороды) - углеводороды , содержащие тройную связь между атомами углерода , образующие гомологический ряд с общей формулой CnH2n-2. Атомы углерода при тройной связи находятся в состоянии sp-гибридизации .
Для алкинов характерны реакции присоединения . В отличие от алкенов , которым свойственны реакции электрофильного присоединения , алкины могут вступать также и в реакции нуклеофильного присоединения . Это обусловлено значительным s-характером связи и, как следствие, повышенной электроотрицательностью атома углерода. Кроме того, большая подвижность атома водорода при тройной связи обуславливает кислотные свойства алкинов в реакциях замещения .
Физические свойства:
Алкины по своим физическим свойствам напоминают соответствующие алкены . Низшие (до С4) - газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, лучше - в органических растворителях.
Химические свойства:
1 Алкины с концевой тройной связью являются С-H кислотами (сильнее чем аммиак и алкены , но слабее, чем спирты ) которые с очень сильными основаниями могут образовывать соли - алкиниды
2. Реакция алкинов с аммиакатами серебра или одновалентной меди является качественной на наличие тройной связи:
3. Алкинид серебра легко растворяется при добавлении цианида натрия с выделением соответствующего алкина:

1 Алкиниды являются сильными нуклеофилами и легко вступают в реакции нуклеофильного замещения :

2. Получение алкингалогенидов
А.Действием галогена на монозамещенные ацетилены в щелочной среде можно получить галогеналкины

Б. Хлорированием ацетилена хлоридом меди (II) в водных растворах CuCl можно получить дихлорацетилен[20] :
И.т.д
2. Нефтяные газы - смесь различных газообразных углеводородов , растворенных в нефти ; они выделяются в процессе добычи и перегонки (это так называемые попутные газы, главным образом состоят из пропана и изомеров бутана ). К нефтяным газам также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена , ацетилена ) углеводородов. Нефтяные газы применяют как топливо и для получения различных химических веществ. Из нефтяных газов путем химической переработки получают пропилен , бутилены , бутадиен и др., которые используют в производстве пластмасс и каучуков .
В России до сих пор значительная часть попутного нефтяного газа в связи со сложностями по его сбору и утилизации сжигается в факелах прямо на месторождениях. Так, в 2009 году, по данным Счётной палаты РФ , только семь крупнейших нефтяных компаний («Роснефть », «Лукойл », ТНК-BP , «Газпром нефть », «Русснефть », «Башнефть » и «Славнефть ») сожгли в факелах 19,96 млрд куб. м попутного нефтяного газа, что составило 64,3 % общей его добычи.
Попутный нефтяной газ - смесь газов, выделяющаяся из углеводородов любого фазового состояния, состоящая из Метана , Этана , Пропана , Изобутана и Бутан , содержащая растворенные в ней высокомолекулярные жидкости (от пентанов и выше по росту гомологического ряда) и различного состава и фазового состояния примеси.
Приблизительный состав ПНГ
Компоненты газа Объемная доля, %
Метан (CH4) 81
Этан (C2H6) 5
Пропан (C3H8) 6
Изо-бутан (i-C4H10) 2.5
Н-бутан (n-C4H10) 1.5
Азот (N2) 1
Углекислый газ (CO2) 0.15
Другие - 2.85

3. Бутин 2 СН3-С(тройная связь)С-СН3
Билет 8.
1. Строение атома;
2. Аналитическая химия, определение, цели, задачи;
3. Дисперсные системы и растворы. Соль, примеры
Ответы:
1. Химики XIXв. Не в состоянии были ответить на вопрос, в чем суть различий между атомами разных элементов, например меди и йода. Лишь в период 1897-1911гг. удалось установить, что сами атомы состоят из еще более мелких частиц. Открытие этих частиц и исследование строения атомов - того, каким образом построены атомы разного вида из более мелких частиц, - одна из наиболее интересных страниц истории науки. Более того, знание строения атомов позволило затем провести исключительно успешную систематизацию химических фактов, а это сделало химию более легкой для понимания и усвоения. Величайшую помощь каждому, изучающему химию, окажет, прежде всего, ясное представление о строении атома.
Частицы, из которых состоят атомы, - это электроны и атомные ядра. Электроны и атомные ядра несут электрические заряды, которые в значительной степени обуславливают свойства самих частиц и строение атомов.
При химических реакциях ядра атомов остаются без изменений, изменяется лишь строение электронных оболочек вследствие перераспределения электронов между атомами. Способностью атомов отдавать или присоединять электроны определяются его химические свойства.

Электрон имеет двойственную (корпускулярно-волновую) природу. Благодаря волновым свойствам электроны в атоме могут иметь только строго определенные значения энергии, которые зависят от расстояния до ядра. Электроны, обладающие близкими значениями энергии образуют энергетический уровень. Он содержит строго определенное число электронов - максимально 2n2. Энергетические уровни подразделяются на s-, p-, d- и f- подуровни; их число равно номеру уровня.

2. Аналити?ческая хи?мия - раздел химии, изучающий химический состав и структуру веществ; подразделяется на качественный анализ, нацеленный на определение того, что или какие вещества, в какой форме находится в образце, и количественный анализ, нацеленный на определение сколько данного вещества (элементов, ионов, молекулярных форм и др.) находится в образце.
Определение элементного состава материальных объектов называют элементным анализом . Установление ........




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.