На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Планирование и прогнозирование развития АПККорреляционный анализ

Информация:

Тип работы: Контрольная. Добавлен: 06.09.2013. Страниц: 17. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Величины, характеризующие различные свойства объектов, могут быть независимыми или взаимосвязанными. Различают два вида зависимостей между величинами (факторами): функциональную и статистическую.
При функциональной зависимости двух величин значению одной из них обязательно соответствует одно или несколько точно определенных значений другой величины. Функциональная связь двух факторов возможна лишь при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. Функциональная связь одной величины с множеством других возможна, если эта величина зависит только от этого множества факторов. В реальных ситуациях существует бесконечно большое количество свойств самого объекта и внешней среды, влияющих друг на друга, поэтому такого рода связи не существуют, иначе говоря, функциональные связи являются математическими абстракциями. Их применение допустимо тогда, когда соответствующая величина в основном зависит от соответствующих факторов.
Более важным частным случаем статистической зависимости является корреляционная зависимость, характеризующая взаимосвязь значений одних случайных величин со средним значением других, хотя в каждом отдельном случае любая взаимосвязанная величина может принимать различные значения.
Если же у взаимосвязанных величин вариацию имеет только одна переменная, а другая является детерминированной, то такую связь называют не корреляционной, а регрессионной. Например, при анализе скорости обмена с жесткими дисками можно оценивать регрессию этой характеристики на определенные модели, но не следует говорить о корреляции между моделью и скоростью.
При исследовании зависимости между одной величиной и такими характеристиками другой, как, например, моменты старших порядков (а не среднее значение), то эта связь будет называться статистической, а не корреляционной.
Корреляционная связь описывает следующие виды зависимостей:
- причинную зависимость между значениями параметров. Примером такой зависимости является взаимосвязь пропускной способности канала передачи данных и соотношения сигнал/шум (на пропускную способность влияют и другие факторы – характер помех, амплитудно-частотные характеристики канала, способ кодирования сообщений и др.). Установить однозначную связь между конкретными значениями указанных параметров не удается. Но очевидно, что пропускная способность зависит от соотношения уровней сигнала и помех в канале. Иногда при этом причину и следствие особо не выделяют. В некоторых случаях такая корреляция является бессмысленной, например: если в качестве исходного фактора взять доходы разработчиков антивирусных программ, а за результат – количество вновь появляющихся вирусов, то можно сделать вывод, что разработчики антивирусов "стимулируют" создание вирусов;
Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили показатели, характеризующие взаимосвязь двух случайных величин (парные показатели): корреляционный момент, коэффициент корреляции.
Корреляционный анализ решает две основные задачи.
Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь.
Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат.
Она решается математически путем определения параметров корреляционного уравнения.
Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.
Определяющая роль в выборе формы связи между явлениями принадлежит теоретическому анализу. Так, например, чем больше размер основного капитала предприятия (факторный признак), тем больше при прочих равных условиях оно выпускает продукции (результативный признак).
С ростом факторного признака здесь, как правило, равномерно растет и результативный, поэтому зависимость между ними может быть выражена уравнением прямой Y = a + b * x, которое называется линейным уравнением регрессии.
Параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу. При x = 0 a = Y. Увеличение количества внесенных удобрений приводит, при прочих равных условиях, к росту урожайности, но чрезмерное внесение их без изменения других элементов к дальнейшему повышению урожайности не приводит, а, наоборот, снижает ее.
Такая зависимость может быть выражена уравнением параболы
Y = a + b * x + c * x2.
Параметр c характеризует степень ускорения или замедления кривизны параболы, и при c > 0 парабола имеет минимум, а при c < 0 - максимум. Параметр b, характеризует угол наклона кривой, а параметр a - начало кривой.
Однако с помощью теоретического анализа не всегда удается установить форму связи. В таких случаях приходится только предполагать о наличии определенной формы связи. Проверить эти предположения можно при помощи графического анализа, который используется для выбора формы связи между явлениями, хотя графический метод изучения связи применяется и самостоятельно.
Чтобы измерить тесноту прямолинейной связи между двумя признаками, пользуются парным коэффициентом корреляции, который обозначается r.
Так как при корреляционной связи имеют дело не с приращением функции в связи с изменением аргумента, а с сопряженной вариацией результативных и факторных признаков, то определение тесноты связи, по существу, сводится к изучению этой сопряженности, т.е. того, в какой мере отклонение от среднего уровня одного признака сопряжено с отклонением другого. Это значит, что при наличии полной прямой связи все значения (х - X) и (у - Y) должны иметь одинаковые знаки, при полной обратной - разные, при частичной связи знаки в преобладающем числе случаев будут совпадать, а при отсутствии связи - совпадать примерно в равном числе случаев.
Для оценки существенности коэффициента корреляции пользуются специально разработанной таблицей критических значений r.
Коэффициент корреляции r применяется только в тех случаях, когда между явлениями существует прямолинейная связь. Если же связь криволинейная, то пользуются индексом корреляции, который рассчитывается по формуле:
R = √(1-(∑▒(у-Y)^2 )/(∑▒(y-y ̅ )^2 ))
где у - первоначальные значения;
у ̅ - среднее значение;
Y - теоретические (выровненные) значения переменной величины.
Показатель остаточной, случайной дисперсии определяется по формуле:
σ_о^2 = (∑▒(у-Y)^2 )/n

Она характеризует размер отклонений эмпирических значений результативного признака у от теоретических Y, т.е. случайную вариацию.
Общая дисперсия:
σ_о^2 = (∑▒(у-Y)^2 )/n
характеризует размер отклонений эмпирических значений результативного признака у от у ̅ , т.е. общую вариацию.
Отношение случайной дисперсии к общей характеризует долю случайной вариации в общей вариации, а
1 – (∑▒(y-Y)^2 )/(∑▒(y-y ̅ )^2 )
есть не что иное, как доля факторной вариации в общей, потому что по правилу сложения дисперсий общая дисперсия равна сумме факторной и случайной дисперсий:
σ2=σ2Y+σ20.
Подставим в формулу индекса корреляции соответствующие обозначения случайной, общей и факторной дисперсий и получим:
R = √(1-(∑▒(y-Y)^2 )/(∑▒(y-y ̅ )^2 )) = √(1-(σ_о^2)/σ^2 ) = √((σ_y^2)/σ^2 )
Таким образом, индекс корреляции характеризует долю факторной вариации в общей:
R = √((σ_y^2)/σ^2 )
однако с той лишь разницей, что вместо групповых средних берутся теоретические значения Y.
Индекс корреляции по своему абсолютному значению колеблется в пределах от 0 до 1.
При функциональной зависимости случайная вариация ∑(y – Y)2 = 0 , индекс корреляции равен 1. При отсутствии связи R = 0, потому что Y = y.
Коэффициент корреляции является мерой тесноты связи только для линейной формы связи, а индекс корреляции - и для линейной, и для криволинейной. При прямолинейной связи коэффициент корреляции по своей абсолютной величине равен индексу корреляции:
|r| = R.
Если индекс корреляции возвести в квадрат, то получим коэффициент детерминации
R2 = σ2Y / σ2.
Он характеризует роль факторной вариации в общей вариации и по построению аналогичен корреляционному отношению η2.
Как и корреляционное отношение, коэффициент детерминации R2может быть исчислен при помощи дисперсионного анализа, так как дисперсионный анализ позволяет расчленить общую дисперсию на факторную и случайную.
Однако при дисперсионном анализе для разложения дисперсии пользуются методом группировок, а при корреляционном анализе - корреляционными уравнениями.
Коэффициент детерминации является наиболее конкретным показателем, так как он отвечает на вопрос о том, какая доля в общем результате зависит от фактора, положенного в основание группировки.
При прямо..........


Список литературы:
1. Алексеева М.М. Планирование деятельности фирмы: Учебно-методическое пособие. – М.: Финансы и статистика, 1999 г.
2. Басовский Л.Е., Прогнозирование и планирование в условиях рынка, Учебное пособие. – М.: ИНФРА-М, 2001, 243 с.
3. Бухалков М.И. Внутрифирменное планирование: Учебник. – М.: ИНФРА-М, 2000. – 400 с.
4. Владимирова Л.П. Прогнозирование и планирование в условиях рынка: Учебное пособие. 4-е изд., перераб. и доп. – М.: Издательский Дом «Дашков и К°», 2007. – 308 с.
5. Дорошенко Ю.А. Методические указания по использованию программного обеспечения при изучении дисциплины «Планирование и прогнозирование развития АПК». – Челябинск, ЧГАУ, 2003. – 48 с.
6. Дорошенко Ю.А., Исаков С.Н., Скоблюк Н.А. Методические указания к практическим занятиям по курсу «Прогнозирование и планирование в АПК». – Челябинск, ЧГАУ, 2001 – 56 с.
7. Ильин А.И. Планирование на предприятии: Учебник. – Мн.: Новое знание, 2001, 2-е изд., - 635 с.
8. Прогнозирование и планирование экономики. Под ред.В.И. Борисевича, Г.А.Кандауровой. Учебное пособие – Минск, ЧП «Экоперспектива», 2000. – 431 с.
9. Статистическое моделирование и прогнозирование: Учеб.пособие / Г.М.Гамбаров, Н.М.Журавель, Ю.Г.Королев и др.; под ред.А.Г.Гранберга. – М.: Финансы и статистика, 1990. – 383 с.
10. Черныш Е.А. Прогнозирование и планирование в условиях рынка: Учеб.пособие / Е.А.Черныш, Н.П.Молчанова, А.А.Новикова, Т.А,Салтанова. – М.:ПРИОР, 2000. – 176 с.





Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.