На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная окажите взаимосвязь метаболитов цикла Кребса с обменом белков, углеводов и липидов. Представьте схему

Информация:

Тип работы: Контрольная. Предмет: Химия. Добавлен: 09.09.2013. Страниц: 20. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание

1.6. Напишите химическую формулу глутатиона. Дайте химическое название. Биологическая роль глутатиона 3
2.2. Приведите примеры зависимости растворимости белков от первичной, вторичной и третичной структуры белков и примеры представителей растворимых и нерастворимых белков 4
3.8. Какой суммарный заряд будет иметь тетрапептид: гис-асп-мет-глу в нейтральной среде (рН=7,0)? Напишите химическую структуру и покажите полярные заряженные радикалы аминокислот 6
4.4. Стериды. Дайте характеристику физико-химическим и биологическим свойствам стеридов. Напишите химическую формулу линоленхолестерола. 7
5.18. Практическое применение ферментов в различных отраслях промышленности. Области применения иммобилизованных ферментов 9
6.4. Витамин В1 (тиамин). Распространение в природе, суточная потребность, структура витамина и кофактора, участие в метаболических процессах, симптомы гипо- и авитаминоза 13
7.5. Покажите взаимосвязь метаболитов цикла Кребса с обменом белков, углеводов и липидов. Представьте схему 15
Список литературы 20


1.6. Напишите химическую формулу глутатиона. Дайте химическое название. Биологическая роль глутатиона
Низкомолекулярный трипептид глутатион широко распространен во всех животных тканях и в некоторых растениях. Глутатион представляет собой атипичный трипептид (в котором в образовании одной из пептидных связей участвует не α-карбоксильная, а γ-карбоксильная группа глутамата) следующего строения: γ-глутамил-цистеинил-глицин:

Глутатион (восстановленный)
Цистеин является составной частью глутатиона, поэтому последний может находиться в восстановленной (SH) и в окисленной (S-S) формах, что, во-видимому, имеет отношение к биологической роли глутатиона в организме.
Глутатион участвует в синтезе лейкотриенов и является кофактором фермента глутатионпероксидазы. Он также важен в качестве гидрофильной молекулы, которая присоединяется ферментами печени к гидрофобным токсическим веществам в процессе их биотрансформации с целью выведения из организма (в составе желчи).
Как часть глиоксалазной ферментативной системы глутатион участвует в реакции детоксификации метилглиоксаля, токсического побочного продукта метаболизма. Глиоксалаза I превращает метилглиоксаль и восстановленный глутатион в лактоилглутатион. Глиоксалаза II гидролизует лактоилглутатион на глутатион и лактат (молочную кислоту).
Глутатион является субстратом реакций конъюгирования и восстановления, катализируемых глутатион-S-трансферазой в цитозоле, микросомах и в митохондриях.
2.2. Приведите примеры зависимости растворимости белков от первичной, вторичной и третичной структуры белков и примеры представителей растворимых и нерастворимых белков
Многие белки хорошо растворяются в воде, что обусловлено наличием на поверхности белковой молекулы свободных гидрофильных групп (– OH, – NH2, – COOH и др.). Растворимые белки гидрофильные коллоиды, активно связывающие воду; их растворы обладают значительной вязкостью, низким осмотическим давлением. Различные белки растворяются по-разному. Белки опорных тканей (кератин, проколлаген, коллаген, эластин и др.) нерастворимы в воде.
Растворимость белка в воде зависит от характера белка, реакции среды и присутствия электролитов. В кислой среде лучше растворяются белки, обладающие кислыми свойствами (альбумины, глобулины, проламины, глютелины); щелочные белки (протамины, гистамины) лучше растворяются в щелочной среде.
Различия в растворимости отмечаются как среди кисло-, так и среди щелочнореагирующих белков. Альбумины растворяются в дистиллированной воде, а глобулины растворяются в воде только в присутствии электролитов. Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2- и СООН-групп. Для них характерны все свойства кислот и оснований. В зависимости от реакции среды и соотношения кислых и основных аминокислот белки в растворе несут отрицательный или положительный заряд, перемещаясь к аноду или катоду. Это свойство используется при очистке белков методом электрофореза.
Белки обладают явно выраженными гидрофильными свойствами. Молекулы белка не способны проникать через полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей.
Характерной константой белков является изоэлектрическая точка – pI. В изоэлектрической точке суммарный заряд белков, обладающих амфотерными свойствами, равен нулю и белки не перемещаются в электрическом поле. Зная аминокислотный состав белка, можно приближенно определить изоэлектрическую точку.
Изоэлектрическая точка большинства белков животных тканей лежит в пределах от 5,5 до 7,0, что свидетельствует о частичном преобладании кислых аминокислот. Однако в природе имеются белки, у которых значения изоэлектрических точек лежат в крайних значениях рН среды. В частности, величина рI пепсина (фермент желудочного сока) равна единице, сальмина (основной белок из молоки семги) – почти двенадцати.
В изоэлектрической точке белки наименее устойчивы в растворе и легко выпадают в осадок. Изоэлектрическая точка белка в сильной степени зависит от присутствия в растворе ионов солей; в то же время на ее величину не влияет концентрация белка.
В химии белков существует понятие «изоионная точка белка». Раствор белка называется изоионным, если он не содержит никаких других ионов, кроме ионизированных остатков аминокислот белковой молекулы и ионов, образующихся при диссоциации воды. Для освобождения белка от посторонних ионов его раствор обычно пропускают через колонку, наполненную смесью анионо- и катионообменников. Изоионной точкой данного белка принято называть значение рН изоионного раствора этого белка: [H+] + [P] • Z = [OH-], где [Р] – молярная концентрация белка; Z – средний заряд молекулы.
Согласно этому уравнению, изоионная точка белка зависит от его концентрации. Очевидно, поэтому белок, за исключением случая, когда рI равно семи, не может быть одновременно изоэлектрическим и изоионным.

3.8. Какой суммарный заряд будет иметь тетрапептид: гис-асп-мет-глу в нейтральной среде (рН=7,0)? Напишите химическую структуру и покажите полярные заряженные радикалы аминокислот
При нейтральных значениях рН все кислотные (способные отдавать Н+) и все основные (способные присоединять Н+) функциональные группы находятся в диссоциированном состоянии. Поэтому в нейтральной среде аминокислоты, содержащие недиссоциирующий радикал, имеют суммарный нулевой заряд. Аминокислоты, содержащие кислотные функциональные группы, имеют суммарный отрицательный заряд, а аминокислоты, содержащие основные функциональные группы, - положительный заряд (табл. 1-3).
Изменение рН в кислую сторону (т.е. повышение в среде концентрации Н+) приводит к подавлению диссоциации кислотных групп. В сильно кислой среде все аминокислоты приобретают положит.....


Список литературы

1. Белясова, Н.А. Биохимия и молекулярная биология / Н.А. Белясова. - Минск: Книжный дом, 2004. - 415с.
2. Биологическая химия / под ред. Н.И. Ковалевской. - М.: Академия, 2005. - 256с.
3. Комов, В.П. Биохимия / В.П. Комов, В.Н.Шведова.– М.: Дрофа, 2004. - 639с.
4. Коничев, А.С. Молекулярная биология / А.С. Коничев, Г.Н. Севастьянова. – М.: Академия, 2005. - 400с.
5. Филлипович, Ю.Б. Основы биохимии / Ю.Б. Филлипович. – М.: Высшая школа, 1985. - 503с.




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.