На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная ВНУТРЕННЯЯ ЭНЕРГИЯ

Информация:

Тип работы: Контрольная. Предмет: Химия. Добавлен: 19.09.2013. Страниц: 32. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Оглавление:
1.Теория………………………………………………………….2
Вопрос №2………………………………………………………..2
Вопрос №18………………………………………………………7
Вопрос №28………………………………………………………17
Вопрос №46………………………………………………………24
2.Практика……………………………………………………….29
Задача №57………………………………………………………..29
Задача №61………………………………………………………..29
Задача №66………………………………………………………..30
Задача №69………………………………………………………..30
Список литературы…………………………………………….32


Теория
2) ВНУТРЕННЯЯ ЭНЕРГИЯ термодинамич. ф-ция состояния системы, ее энергия, определяемая внутр. состоянием. Внутренняя энергия складывается в осн. из кинетич. энергии движения частиц (атомов, молекул,ионов, электронов) и энергии взаимод. между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутр. состояния системы под действием внеш. поля; во внутреннюю энергию входит, в частности, энергия, связанная с поляризацией диэлектрика во внеш. электрич. поле и намагничиваниемпарамагнетика во внеш. магн. поле. Кинетич. энергия системы как целого и потенциальная энергия, обусловленная пространств. расположением системы, во внутреннюю энергию не включаются. Втермодинамике определяется лишь изменение внутренней энергии в разл. процессах. Поэтому внутреннюю энергию задают с точностью до нек-рого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.
Внутренняя энергия U как ф-ция состояния вводится первым началом термодинамики, согласно к-рому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение ф-ции состояния

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Ур-ние (1) выражает закон сохранения энергии в применении к термодинамич. процессам, т. е. процессам, в к-рых происходит передача теплоты. Для циклич. процесса, возвращающего систему в начальное состояние, . В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Qv= . Для адиабатич. процессов, когда Q = 0, = - W.
Внутренняя энергия системы как ф-ция ее энтропии S, объема V и числа молей mi i-того компонента представляет собой термодинамический потенциал. Это является следствием первого и второго начал термодинамики и выражается соотношением:
"
где Т - абс. т-ра, р-давление, -хим. потенциал i-того компонента. Знак равенства относится к равновесным процессам, знак неравенства-к неравновесным. Для системы с заданными значениями S, V, mi (закрытая система в жесткой адиабатной оболочке) внутренняя энергия при равновесии минимальна. Убыль внутренней энергии в обратимых процессах при постоянных V и S равна макс. полезной работе (см. Максимальная работа реакции).
Зависимость внутренней энергии равновесной системы от т-ры и объема U =f(T, V)наз. калорическимуравнением состояния. Производная внутренней энергии по т-ре при постоянном объеме равна изохорнойтеплоемкости:

Внутренняя энергия идеального газа от объема не зависит и определяется только т-рой.
Экспериментально определяют значение внутренней энергии в-ва, отсчитываемое от ее значения при абс. нуле т-ры. Определение внутренней энергии требует данных о теплоемкости СV(Т), теплотах фазовых переходов, об ур-нии состояния. Изменение внутренней энергии при хим. р-циях (в частности, стандартная внутренняя энергия образования в-ва) определяется по данным о тепловых эффектах р-ций, а также по спектральным данным. Теоретич. расчет внутренней энергии осуществляется методами статистич.термодинамики, к-рая определяет внутреннюю энергию как среднюю энергию системы в заданных условиях изоляции (напр., при заданных Т, V, mi). Внутренняя энергия одноатомного идеального газа складывается из средней энергии поступат. движения молекул и средней энергии возбужденных электронных состояний; для двух- и многоатомных газов к этому значению добавляется также средняя энергия вращения молекул и их колебаний около положения равновесия. Внутренняя энергия 1 моля одноатомного идеального газа при т-рах порядка сотен К составляет 3RT/2, где R-газовая постоянная; она сводится к средней энергии поступат. движения молекул. Для двухатомного газа мольное значение внутренней энергии-ок. 5RT/2 (сумма поступат. и вращат. вкладов). Указанные значения отвечают закону равнораспределения энергии для названных видов движения и вытекают из законов классич. статистич. механики. Расчет колебат. и электронного вкладов во внутреннюю энергию, а также вращат. вклада при низких т-рах требует учета квантовомех. закономерностей. Внутренняя энергия реальных систем включает помимо вкладов, учитываемых для идеального газа, также среднюю энергию межмолекулярных взаимодействии.
Энтальпия (от греч. enthálpo — нагреваю) (теплосодержание, тепловая функция Гиббса), потенциал термодинамический, характеризующий состояние термодинамической системы при выборе в качестве основных независимых переменных энтропии S и давления р. Обозначается H (S, р, N, xl), где N — число частиц системы, xi — другие макроскопические параметры системы. Энтальпия — аддитивная функция, т. е. энтальпия всей системы равна сумме энтальпий составляющих её частей; с внутренней энергией U системы энтальпия связана соотношением
H = U + pV, (1)
где V — объём системы. Полный дифференциал энтальпии (при неизменных N и xi) имеет вид:
dH = TdS + Vdp. (2)
Из формулы (2) можно определить температуру Т и объем системы:
, .
При постоянном давлении (р = const.) теплоемкость системы

Эти свойства энтальпии при р = const аналогичны свойствам при постоянном объеме:
, и .
Равновесному состоянию системы в условиях постоянства S и р соответствует минимальное значение энтальпии. Изменение энтальпии (Н) равно количеству теплоты, которое сообщают системе или отводят от нее при постоянном давлении, поэтому значения Н характеризуют тепловые эффекты фазовых переходов(плавления, кипения и т. д.), химических реакций и других процессов, протекающих при постоянном давлении. При тепловой изоляции тел (в условиях р = const) энтальпия сохраняется, поэтому ее называют иногда теплосодержанием или тепловой функцией. Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля — Томсона эффекта, нашедшего важное практическое применение при сжижении газов. Термин «энтальпия» был предложен Х. Камерлинг-Оннесом.
ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).
Работа силы, мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения.
ТЕПЛОТА ОБРАЗОВАНИЯ, то же, что энтальпия образования. ЭНТАЛЬПИЯ ОБРАЗОВАНИЯ (теплота образования), энтальпия р-ции образования данного в-ва (или р-ра) из заданных исходных в-в. Энтальпия образования хим. соединения наз. энтальпию р-ции образования данного соед. из простых в-в. В качестве простых в-в выбирают хим. элементы в их естественном фазовом и хим. состоянии при данной т-ре. Так, при 298 К для хлора простым в-вом служит газообразный хлор, состоящий измолекул С12, а для калия - металлич. К. Энтальпия образования твердого КС1 при 298 К - это энтальпия р-ции:
К(тв.) + 1/2С12= КС1(тв.)........



Cписок литературы:
1. Реми Г. Курс неорганической химии. Т. 1. М.: Изд-во иностранной ли-тературы, 1963. — 920 с.
2. Реми Г. Курс неорганической химии. Т. 2. М.: Мир, 1974. — 775 с.
3. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Спб: Химия, 1978. – 392 с.
4. Википедия




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.