На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Краткая историческая справка о термине Нейронные сети

Информация:

Тип работы: Реферат. Предмет: Информатика. Добавлен: 22.10.2013. Сдан: 2013. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Международный Университет Кыргызстана


РЕФЕРАТ
Тема: Краткая историческая справка о термине «Нейронные сети».
По дисциплине: Нейросетевые технологии.


Выполнила: Студентка группы МКС-10
*************
№ зачетки______________
10 сентября 2013 года

Проверила: Доцент кафедры «КИС и У»
***********
Бишкек 2013
1. Понятие нейронных сетей.

Понятие нейронных сетей возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Нейронная сеть представляет собой систему соединенных между собой простых процессоров. Они довольно просты, и каждый их них обрабатывает входящие сигналы и посылает их другим процессорам. Будучи соединенными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.
Нейронные сети – математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей – сетей нервных клеток живого организма.
Нейронные сети имеют возможность обучаться, в чем и заключается одно из главных их преимуществ перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.
На рисунке 1 представлена простая нейронная сеть. Нейроны в ней распределены по L уровням, на каждом из которых находятся Ik нейронов. Для наглядности каждый нейрон, кроме входных и выходных, представлен в виде двух узлов: один суммирует входящие сигналы, другой преобразует их. [1]

Рис. 1. Нейронная сеть
2. История исследований нейронных сетей.

В истории исследований в области нейронных сетей, как и в истории любой другой науки, были свои успехи и неудачи. Кроме того, здесь постоянно сказывается психологический фактор, проявляющийся в неспособности человека описать словами то, как он думает.
Основной областью исследований по искусственному интеллекту в 60-е – 80-е годы были экспертные системы. Однако, скоро стало ясно, что они, хотя и приносят пользу в некоторых областях, но не охватывают ключевые аспекты работы человеческого мозга. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.[2]
Основы теории нейронных сетей были независимо разработаны А.Бэйном(1873) и У.Джеймсом(1890). В своих работах они рассматривают мыслительную деятельность как результат взаимодействия между нейронами в головном мозге.
Согласно Бэйну, любая деятельность ведёт к активизации определенного набора нейронов. При повторении той же деятельности связи между этими нейронами укрепляются. Согласно его теории, эти повторения ведут к формированию памяти. Научное сообщество того времени восприняло теорию Бэйна скептически, поскольку следствием её являлось возникновение чрезмерного количества нейронных связей в мозге. Теперь очевидно, что мозг является чрезвычайно сложной конструкцией и способен работать с несколькими задачами одновременно.
Теория Джеймса была схожа с теорией Бэйна, но в то же время Джеймс предположил, что формирование памяти происходит в результате прохождения электрических токов между нейронами в головном мозге, не требуя соединений нейронов для каждого акта запоминания или действия.
Британский физиолог Ч.Шеррингтон в 1898 провел эксперименты для проверки теории Джеймса. Он пропускал электрический ток вдоль спинного мозга крыс. При этом вместо ожидаемого усиления тока, согласно теории Джеймса, Шеррингтон обнаружил, что электрический ток ослабевает с течением времени. Результаты экспериментов Шеррингтона сыграли важную роль в разработке теории привыкания.[3]
Первой попыткой создания и исследования искусственных нейронных сетей считается работа Дж. Маккалока (J. McCulloch) и У. Питтса (W. Pitts) "Логическое исчисление идей, относящихся к нервной деятельности" (1943 г.), в которой была построена модель нейрона, и сформулированы основные принципы построения ИНС. Хотя эта работа была лишь первым этапом, многие идеи, описанные в ней, остаются актуальными и на сегодняшний день.[2]............


3. Заключение.

Урок, который можно извлечь из истории нейронных сетей, выражается законом Кларка, выдвинутым писателем и ученым Артуром Кларком. В нем утверждается, что, если крупный уважаемый ученый говорит, что нечто может быть выполнено, то он почти всегда прав. Если же ученый говорит, что это не может быть выполнено, то он почти всегда не прав. История науки является летописью ошибок и частичных истин. То, что сегодня не подвергается сомнениям, завтра отвергается. Некритическое восприятие «фактов» независимо от их источника может парализовать научный поиск. Блестящая научная работа Минского задержала развитие искусственных нейронных сетей. Но нет сомнений и в том, что область пострадала вследствие необоснованного оптимизма и отсутствия достаточной теоретической базы.[4]



Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.