Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Непараметрические методы оценки корреляционной связи показателей

Информация:

Тип работы: Контрольная. Добавлен: 18.11.2013. Сдан: 2013. Страниц: 15. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ

1. Введение …………………………………………………...………………...3
2. Непараметрические методы оценки корреляционной связи показателей.………………………………………………………………...4
3. Заключение……………………………………………….…………….…..10
4. Список использованной литературы……………………….……………..11
5. Задание 1. ………………………………………………………..…..……..12
6. Задание 2……………....................................................................................14


ВВЕДЕНИЕ
Анализ взаимосвязей, присущих изучаемым процессам и явлениям, является важнейшей задачей статистических исследований. В тех случаях, когда речь идет о явлениях и процессах, обладающих сложной структурой и многообразием свойственных им связей, такой анализ представляет собой сложную задачу. Прежде всего, необходимо установить наличие взаимосвязей и их характер. Вслед за этим возникает вопрос о тесноте взаимосвязей и степени воздействия различных факторов (причин) на интересующий исследователя результат. Если черты и свойства изучаемых объектов могут быть измерены и выражены количественно, то анализ взаимосвязей может вестись на основе применения математических методов. Использование этих методов позволяет проверить гипотезу о наличии или отсутствии взаимосвязей между теми или иными признаками, выдвигаемую на основе содержательного анализа. Далее, лишь посредством математических методов можно установить тесноту и характер взаимосвязей или выявить силу (степень) воздействия различных факторов на результат.
Наиболее разработанными в математической статистике методами анализа взаимосвязей являются корреляционный и регрессионный анализ.
Анализ статистической, или корреляционной, связи предполагает выявление формы связи, а также оценку тесноты связи. Первая задача решается методами регрессионного анализа, вторая - методами корреляционного анализа. Регрессионный анализ сводится к описанию статистической связи с помощью подходящей функциональной зависимости. Корреляционный анализ позволяет оценивать тесноту связи посредством специальных показателей, причем выбор их зависит от вида функциональной зависимости, пригодной для адекватного описания рассматриваемой статистической взаимосвязи.


НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ КОРРЕЛЯЦИОННОЙ СВЯЗИ ПОКАЗАТЕЛЕЙ

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции.
Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому - сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.
Например, некоторое увеличение аргумента повлечет з........



Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.