На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Метод Монте-Карло. Имитационное моделирование по методу Монте-Карло.

Информация:

Тип работы: Реферат. Добавлен: 19.12.2013. Сдан: 2012. Страниц: 14. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Введение.
В настоящее время проблема управления рисками является весьма актуальной, и в связи с этим особое внимание уделяется методам управления рисками.
Применение метода Монте-Карло (статистических испытаний) - лучший вариант для эффективного управлении рисками предприятия.
Датой рождения метода Монте-Карло принято считать 1949 г., когда американские ученые Н.Метрополис и С.Улам опубликовали статью «Метод Монте-Карло», в которой систематически его изложили.
При проведении анализа по методу Монте-Карло компьютер использует процедуру генерации псевдослучайных чисел для имитации данных из изучаемой генеральной совокупности.
1. Имитационное моделирование по методу Монте-Карло.
Имитационное моделирование по методу Монте-Карло (Monte-Carlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров, а также связь между изменениями параметров (корреляцию) получить распределение доходности проекта.
Блок-схема, представленная на рисунке отражает укрупненную схему работы с моделью (рис. 1).

Рис. 1. Схема работы с моделью

Применение метода имитации Монте-Карло требует использования специальных математических пакетов (например, специализированного программного пакета Гарвардского университета под названием Risk-Master), в то время, как метод сценариев может быть реализован даже при помощи обыкновенного калькулятора.
Как уже отмечалось, анализ рисков с использованием метода имитационного моделирования Монте-Карло представляет собой “воссоединение” методов анализа чувствительности и анализа сценариев на базе теории вероятностей.
Результатом такого комплексного анализа выступает распределение вероятностей возможных результатов проекта ( например, вероятность получения NPV<0).
Упоминаемый ранее программный пакет Risk-Master позволяет в диалоговом режиме осуществить процедуру подготовки информации к анализу рисков инвестиционного проекта по методу Монте-Карло и провести сами расчеты.
Первый шаг при применении метода имитации состоит в определении функции распределения каждой переменной, которая оказывает влияние на формирование потока наличности. Как правило, предполагается, что функция распределения являются нормальной, и, следовательно, для того, чтобы задать ее необходимо определить только два момента (математическое ожидание и дисперсию).
Как только функция распределения определена, можно применять процедуру Монте-Карло.
2. Алгоритм метода имитации Монте-Карло
Шаг 1. Опираясь на использование статистического пакета, случайным образом выбираем, основываясь на вероятностной функции распределения значение переменной, которая является одним из параметров определения потока наличности.
Шаг 2. Выбранное значение случайной величины наряду со значениями переменных, которые являются экзогенными переменными, используется при подсчете чистой приведенной стоимости проекта.
Шаги 1 и 2 повторяются большое количество раз, например 1000, и полученные 1000 значений чистой приведенной стоимости проекта используются для построения плотности распределения величины чистой приведенной стоимости со своим собственным математическим ожиданием и стандартным отклонением.
Используя значения математического ожидания и стандартного отклонения, можно вычислить коэффициент вариации чистой приведенной стоимости проекта и затем оценить индивидуальный риск проекта, как и в анализе методом сценариев.
Теперь необходимо определить минимальное и максимальное значения критической переменной, а для переменной с пошаговым распределением помимо этих двух еще и остальные значения, принимаемые ею. Границы варьирования переменной определяются, просто исходя из всего спектра возможных значений.
По прошлым наблюдениям за переменной можно установить частоту, с которой та принимает соответствующие значения. В этом случае вероятностное распределение есть то же самое частотное распределение, показывающее частоту встречаемости значения, правда, в относительном масштабе (от 0 до 1). Вероятностное распределение регулирует вероятность выбора значений из определенного интервала. В соответствии с заданным распределением модель оценки рисков будет выбирать произвольные значения переменной. До рассмотрения рисков мы подразумевали, что переменная принимает одно определенное нами значение с вероятностью 1. И через единственную итерацию расчетов мы получали однозначно определенный результат. В рамках модели вероятностного анализа рисков проводится большое число итераций, позволяющих установить, как ведет себя результативный показатель (в каких пределах колеблется, как распределен) при подстановке в модель различных значений переменной в соответствии с заданным распределением.
Задача аналитика, занимающегося анализом риска, состоит в том, чтобы хотя бы приблизительно определить для исследуемой переменной (фактора) вид вероятностного распределения. При этом основные вероятностные распределения, используемые в анализе рисков, могут быть следующими: нормальное, пост........

Библиографический список:
1. Кувшинов А.П. Сценарный анализ макроэкономических рисков инфраструктурных проектов с применением метода Монте-Карло. Проект по созданию инженерно-транспортной и социальной инфраструктуры / Кувшинов А.П., Лукашов А.У. // Управление корпоративными финансами. - 2009. - N 3. - C.154-177.

2. Лукашов А.В. Метод Монте-Карло для финансовых аналитиков: краткий путеводитель / Лукашов А.В. // Управление корпоративными финансами. - 2007. - N 1. - C.22-39.
3. Пупенцова C.В. Управление рисками при оценке активов и бизнеса в современных условиях / Пупенцова C.В. // Имущественные отношения в Российской Федерации. - 2009. - N 9. - C.56-64.
4. Интернет-ресурсы с сайта < >




Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.