Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная работа Корреляционно-регрессионный анализ как объект статистического изучения.Система статистических показателей, характеризующих корреляционно-регрессионный анализПрименение метода корреляционно-регрессионного анализа встатистике

Информация:

Тип работы: Контрольная работа. Предмет: Статистика. Добавлен: 10.4.2014. Сдан: 2014. Страниц: 41. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание:

1.Теоретическая часть:
Введение…………………………………………………………………………3
Корреляционно-регрессионный анализ как объект статистического изучения…………………………………………………………………………..4
Система статистических показателей, характеризующих корреляционно-регрессионный анализ……………………..………………………………….…..7
Применение метода корреляционно-регрессионного анализа в
статистике …………….……………………………………………………… 11
2. Расчетная часть……………………………………………………..………..13
Заключение……………………………………….…………………………….41
Список литературы……………………………………………………………..42


Введение.

Слово корреляция ввел в употребление в статистику английский биолог и статистик Френсис Гальтон в конце в. Тогда оно писалось как «corelation» (соответствие), но не просто «связь» (relation), а «как бы связь», т.е. связь, но не привычной в то время функциональной форме. В науке вообще, а именно в палеонтологии, термин «корреляция» применил ещё раньше, в конце в., знаменитый французский палеонтолог (специалист по ископаемые останками животных и растений прошлых эпох) Жорж Кювель. Он ввел даже «закон корреляции» частей и органов животных.
Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. Наличие корреляционных связей присуще многим общественным явлениям.
Цель данной работы ознакомится с понятием корреляционно-регрессионного анализа, рассмотреть понятия, характеризующие его, узнать где и как можно применять метод корреляционно- регрессионного анализа.


1.1.Корреляционно-регрессионный анализ как объект статистического изучения.
Современная наука исходит из взаимосвязи всех явлений природы и общества. Объем продукции предприятия связан с численностью работников, мощностью двигателей, стоимостью производственных фондов и ещё многими признаками.
Невозможно управлять явлениями, предсказывать их развитие без изменения характера, силы и других особенностей связей, поэтому методы исследования, измерения связей составляют чрезвычайно важную часть методологии научного исследования, в том числе и статистического.
Различают два вида связи между различными явлениями и их признаками: функциональную и жестко детерминированную, с одной стороны, и статистическую или стохастически детерминированную - с другой. Строго определить различия этих типов связи можно тогда, когда они получают математическую формулировку.
Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т.е. значению одной переменной обязательно соответствует одно или несколько точно заданных значений другой переменой, связь между ними является функциональной.
Стохастически детерминированная связь не имеет ограничений и условий, присущих функциональной связи. Если с изменением значения одной из переменных вторая может в определенных пределах принимать любые значения с некоторыми вероятностями, но её среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону - связь является статистической. Иными словами, при статистической связи разным значениям одной переменной соответствует разные распределения значений другой переменой.
В настоящее время наука не знает более широкого определения связи. Все связи, которые могут быть измерены и выражены численно, подходят под определение «статистические связи», в том числе и функциональные. Последние представляют собой частный случай статистических связей, когда значения одной переменной соответствуют «распределения» значений второй, состоящие из одного или нескольких значений и имеющие вероятность, равную единице. Конечно, качественное различие действительно вероятных распределений и отдельных значений, имеющих вероятность единицы (достоверных), настолько велико, что хотя функциональные связи и подходят в широком смысле под определение статистической связи, все же с полным основанием можно говорить о двух типах связей.
Корреляционной связью называют важнейший частный случай статистической связи, состоящий в том, что разным значениям одной переменной соответствуют различные средние значения другой. С изменением значения признака x закономерным образом изменяется среднее значение признака y; в то время как в каждом отдельном случае значение признака y (с различными вероятностями) может принимать множество различных значений.
Если же с изменением значения признака x среднее значение признака y не изменяется закономерным образом, но закономерно изменяется другая статистическая характеристика (показатели вариации, ассиметрии, эксцесса и т.п.), то связь является не корреляционной, хотя и статистической.
Корреляционная связь между признаками может возникать разными путями. Важнейший путь- причинная зависимость результативного признака (его вариации) от вариации факторного признака.
Совершенно иная интерпретация необходима при изучении корреляционной связи между двумя следствиями общей причины. Данную корреляцию нельзя интерпретировать как связь причины и следствия;
Третий путь возникновения корреляции - взаимосвязь признаков, каждый из которых и причина и следствие.
Совершенно иная интерпретация необходима при изучении корреляционной связи между двумя следствиями общей причины.
Третий путь возникновения корреляции - взаимосвязь признаков, каждый из которых и причина, и следствие.


1.2. Система статистических показателей, характеризующих
корреляционно-регрессионный анализ

В соответствии с сущностью корреляционной связи её изучение имеет две цели:
1. Измерение параметров уравнения, выражающего связь средних значений зависимой переменной со значениями независимой переменной (зависимость средних величин результативного признака от значений одного или нескольких факторных признаков);
2. измерение тесноты связи двух (или большего числа) признаков между собой.
Вторая задача специфична для статистических связей, а первая разработана для функциональных связей и является общей. Основным методом решения задачи нахождения параметров уравнение связи является метод наименьших квадратов, разработанный К.Ф. Гауссом. Он состоит в минимизации суммы квадратов отклонений фактически измеренных значений зависимой переменной y от ее значений, вычисленных по уравнению связи с факторным признаком (многими признаками) x.
Для изменения тесноты связи применяется несколько показателей. При парной связи теснота связи изменяется прежде всего корреляционным отношением, которое означается греческой группой ?. Квадрат корреляционного отношения - это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднею величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации:
(1)

число групп по факторному признаку;
- число единиц совокупности;
- индивидуальные значения результативного признака;
- его средние групповые значения;
- его общее среднее значение;
- частота в j-й группе.

Формула (1) применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уровню связи (уравнению парной или множественной регрессии) применяется формула (2):
(2),
где - индивидуальные значения y по уравнению связи.

Сумма квадратов в числителе - это объясненная связью с фактором x (факторами) дисперсия результативного признака y. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии.
Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться большей, чем в знаменателе, и отношение утратит тот смысл, которое оно должно иметь, а именно каково доля общей вариации результативного признака, объясняемая на основе выбранного уравнения в связи с его факторным признаком (признаками). Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по другой формуле (3), не столь наглядно выявляющей сущность показателя, но зато полностью гарантирующей от возможного искажения:
(3)
В числителе формулы (3) стоит сумма квадратов отклонений фактических значений признака от его индивидуальных расчетных значений, т.е. доля вариации этого признака, не объясняемая за счет входящих в уравнение связи признаков-факторов. Эта сумма не может стать раной нулю, есл........


Список литературы:

1.Гусаров В.М. Статистика: Учеб. пособие для вузов - М.: ЮНИТИ-ДАНА, 2007.

2.Ефимова М.Ф., Петрова Е.П., Румянцев В.Н. Общая теория статистики. - М.: ИНФРА - М, 2-е издание. 2007.

3. Филимонов В.С. Гуртовник Е.А. Практикум по статистике. М.: - Финансы и статистика, 2007.

4. Статистика: Учебник/ Под ред. проф. И.И. Елисеевой. - М.: Витэрм, 2002.

5. Теория статистики: Учебник/ Под ред. проф. Р.А. Шмойловой. - М.: Финансы и статистика, 2001; 2003;2006.


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.