На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Работа № 80359


Наименование:


Курсовик Развитие творческих способностей младших школьников средствами математики

Информация:

Тип работы: Курсовик. Предмет: Педагогика. Добавлен: 26.08.2014. Сдан: 2013. Страниц: 30. Уникальность по antiplagiat.ru: 94.

Описание (план):


Содержание

Введение 2
Глава I. Теоретические основы развития творческих способностей младших школьников средствами математики 6
1.1. Специфика младшего школьного возраста 6
1.2. Понятие и сущность творческих способностей 8
1.3.Общая характеристика средств математики, способствующих развитию творческих способностей………………………………………………………………………..……….
Выводы по I главе………………………………………………………………..15
Глава II. Эмпирические исследования по развитию творческих способностей младших школьников средствами математики Ошибка! Закладка не определена.
2.1. Содержание работы по развитию творческих способностей младших школьников средствам математики 16
2.2. Рекомендации по развитию творческих способностей у младших школьников в процессе естественно-математического образования 18
Выводы по II главе………………………………………………………………22
Заключение
Список использованной литературы
Приложения



Введение

Ученые считают, что у каждого отдельно взятого человека есть творческие способности. Просто не все из нас догадываются, что скрывается в нашем подсознании. Поэтому очень важно иногда смотреть на мир под другим углом, заниматься самосовершенствованием.
В любом случае самым важным фактором в развитии какого-либо вида творческих способностей является сила воли и желание самого человека. Этот факт доказывают мировые гении, у которых не было необходимых условий для развития и образования, но все, же они подарили истории мировые шедевры.
Исследованием проблем развития творческих способностей личности занимались отечественные и зарубежные авторы, такие как: Вертгеймер М., Гилфорд Дж., Торренс Е.П., Богоявленская Д.Б., Варламова Е.Щ., Дружинин В.Н., Мелик-Иашаев А.А., Пономарёв Я.А., Яковлева Е.Л. и др.
Актуальность исследования: в новых условиях развития общества изучение творческих способностей и их развитие особенно на уроках естественно-математического цикла становится одним из приоритетных направлений.
Это связано с тем, что актуализация данного феномена может повысить качество любых общественных реформ, выступая при этом противовесом регрессивным линиям развития общества. Автор Е.Л. Яковлева, отмечает, что быть постоянно изменяющимися в изменяющемся мире это и есть проявление неповторимости через развитие творческих способностей
Ведь не секрет, что каждый человек по-своему уникален, однако большинство людей стремится действовать по заранее заданным программам, отсюда предсказуемость поведения и неумение найти ответы на поставленные вопросы. Поэтому важно развивать творческие возможности человека уже с начальной школы. Развитие творческих способностей младших школьников в дальнейшем может обеспечить появление новых знаний, оригинальных идей, качественное преобразование на рынке труда, нестандартность в решении проблемных ситуаций и дифференциацию людей по их творческому потенциалу. Развитие творческих способностей младших школьников тем самым обеспечивает самопродвижение каждого ученика в своем развитии. Происходит закладка фундамента, включающая в себя открытость опыту, чувствительность ко всему новому, новым знаниям, импровизации, повышенный эмоциональный позитивизм к своим и чужим творческим удачам, желание создавать творческий продукт.
Цель исследования: теоретически обосновать возможности по развитию творческих способностей младших школьников в процессе естественно-математического образования.
Объект исследования: развитие творческих способностей у детей младшего школьного возраста на уроках естественно-математического цикла.
Предмет исследования: занятия по математике, как способ развития творческих способностей младших школьников в процессе естественно-математического образования.
Для достижения поставленной цели необходимо решить следующие задачи:
- изучить сущность младшего школьного возраста;
- рассмотреть понятие и сущность творческих способностей;
- проанализировать средства математики, развивающие творческие
- составить рекомендации по развитию творческих способностей.
Методы исследования:
1. Теоретический метод: анализ психолого-педагогической литературы по проблеме исследования.
2. Эмпирический метод: диагностические методики.
3. Организационный метод: сравнительный.
4. Метод статистической обработки данных: количественный (процентное соотношение показателей) и качественный (анализ полученных результатов).
Структура работы: курсовая работа состоит из введения, двух глав, заключения, списка литературы и приложения.


Глaвa I. Теоретические основы развития творческих способностей младших школьников средствами математики
1.1. Специфика младшего школьного возраста

Младший школьный возраст является достаточно значимым периодом жизни, поскольку в это время закладываются основы характера и поведения, проявляется темперамент, а также стремление занять определенный социальный статус в обществе. Приобретая новые качества и навыки, школьник учится действовать в разных жизненных обстоятельствах самостоятельно, благодаря чему на его плечи ложится личная ответственность за свои действия и поступки. Все это приводит к тому, что у ребенка меняется мировосприятие и повышается уровень интеллектуального развития. Как и в любом жизненном периоде, здесь есть свои психологические особенности, зная которые, младший школьный возраст можно использовать в качестве закладки основных жизненных ценностей ребенка, а также приобретения положительных качеств. Нужно учитывать, что иногда в это время может возникнуть частая утомляемость, что связано с интенсивным физическим ростом ребенка, который опережает его психо-эмоциональное развитие. [1]...


Заключение

Процесс развития математических способностей учащихся требует от учителя большого профессионализма. Для обеспечения эффективности своей деятельности педагог должен владеть разнообразными методами обучения, использовать в своей работе многочисленные приёмы и средства обучения. Его деятельность должна быть направлена на развитие самостоятельности и творческого потенциала в учениках. Поэтому для успешного осуществления своей деятельности учитель нуждается в разнообразных методических пособиях и рекомендациях.
Анализ психолого-педагогической литературы по проблеме формирования и развития математических способностей показывает: все без исключения исследователи (как отечественные, так и зарубежные) связывают ее не с содержательной стороной предмета, а с процессуальной стороной мыслительной деятельности.
Мыслительная деятельность – это основной вид деятельности математика, его орудие – карандаш и лист бумаги. Воплощение в жизнь результатов этой деятельности – один из мощнейших факторов развития цивилизации сегодняшнего дня.
Таким образом, многие педагоги полагают, что развитие математических способностей ребенка возможно только при наличии существенных природных данных к этому, т.е. наиболее часто в практике обучения считается, что развивать способности нужно только у тех детей, у которых они уже есть. Работа над развитием математических способностей необходима в отношении каждого ребенка, независимо от его природной одаренности. Таким образом, одной из задач начального курса математики является развитие математических способностей.
Список использованной литературы

1. Азарова, Л.Н. Как развивать творческую индивидуальность младших школьников [Текст] / Л.Н.Азарова // Начальная школа. - 2011.- № 4.
2. Айзман Р.И. Подготовка ребенка к школе [Текст] / Р.И.Айзман.- М.: 2011.- 137 с.
3. Антонович, Н.К. Когда кончается урок математики [Текст]/ Н.К.Антонович.- Новосибирск: Наука. Сиб. отделение, 2011. - 131 с.
4. Аргинская, И.И. Обучаем по системе Занкова [ Текст] / И.И.Аргинская. - М.; Просвещение, 2009. - 244 с.
5. Афонина, Р.Н. Развитие творческого мышления учащихся в процессе выполнения экспериментов[ Текст] / Р.Н.Афонина // Начальная школа. -
6. Бебнева, И.Ф.Развитие творческих способностей учащихся в условиях малокомплектной школы [ Текст] / И.Ф.Бебнева // Научно - практ. журнал Одаренный ребенок.- 2009.- №5.- С.110 - 111.
7. Выготский, Л.С. Воображение и творчество в детском возрасте [Текст] / Л.С.Выготский. - М.: Просвещение, 2011 .- 187 с.
8. Ефремова, Н.В. Упражнения для развития творческих способностей [Текст] / Н.В.Ефремова // Начальная школа. - 2011.- №2.- С. 53 - 55.
9. Калинина, Г.П. Формирование математической культуры у детей старшего дошкольного и младшего школьного возраста [Текст] / Г.П.Калинина // Начальная школа.- 2009.- № 4.- С.31 - 35.
10. Коломинский, Я.Л. Человек: психология [ Текст]/ Я.Л.Коломинский. -
М.: Просвещение, 2009. - 223 с.
11. Котов, А.Я. Вечера занимательной арифметики [ Текст]/ А.Я.Котов. - М.: Просвещение, 2011. - 184 с.
12. Курочкина, М. Методы развития творческих способностей младших школьников [Текст] / М.Курочкина // Воспитание школьников.- 2009.- №4.- С.48 - 50.
13. Макеева, Т.Г. Тестируем детей [ Текст] / Т.Г. Макеева. - Ростов н/Д: Феникс, 2009. - 348 с.
14. Эрдниев, П.М. Обучение математике в начальных классах[ Текст]/ П.М.Эрдниев. - М.: Просвещение, 2009. - 192 с.
15. Якиманская, И.С. Развивающее обучение [ Текст] / И.С.Якиманская. - М.: Педагогика, 2009. - 144 с.



ПРИЛОЖЕНИЕ 1

Фигурный тест Е. Торренса


ПРИЛОЖЕНИЕ 2

Тест Гилфорда




Перейти к полному тексту работы


Смотреть похожие работы

* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.