На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Купвля та продаж ризику. Вступ до теорї страхування та грального бзнесу. Таблична модель поведнки клєнта страхової компанї. Реакця клєнта на змну параметрв страхування. Прибуток страхової компанї та його кориснсть.

Информация:

Тип работы: Курсовик. Предмет: Банковское дело. Добавлен: 26.09.2014. Сдан: 2005. Уникальность по antiplagiat.ru: --.

Описание (план):


51
Міністерство освіти і науки України
Львівський національний університет ім. І.Франка

КУРСОВА РОБОТА

Моделювання поведінки клієнта страхової компанії

ПЛАН

ВСТУП

І. КУПІВЛЯ ТА ПРОДАЖ РИЗИКУ. ВСТУП ДО ТЕОРІЇ СТРАХУВАННЯ ТА ГРАЛЬНОГО БІЗНЕСУ

1. Тест журналу FORTUNE

2. Атом ризику, або лотерея за Нейманом-Моргенштерном.

3. Ставлення до ризику: схильність, несхильність та нейтральність до ризику.

4. Закон спадаючої корисності та ризик

5. Прибуток страхової компанії

6. Принцип об'єднання ризику та акції

7. Селекція за ступенем імовірності втрат

8. Схильність до ризику та гральний бізнес

ІІ. ТАБЛИЧНА МОДЕЛЬ ПОВЕДІНКИ КЛІЄНТА СТРАХОВОЇ КОМПАНІЇ

1. Реакція клієнта на зміну параметрів страхування

ІІІ. АНАЛІЗ РІВНОВАГИ ОСОБИ, ЯКА СТРАХУЄТЬСЯ

1. Математична модель клієнта

2. Теорема про рівновагу

3. Аналіз рівноваги

ІV. АНАЛІЗ ТАКТИКИ СТРАХОВОЇ КОМПАНІЇ

1. Прибуток страхової компанії та його корисність

2. Модель страхової компанії

3. Нейтральність до ризику страхової компанії

4. Розрахунок реакції клієнта страхової компанії

5. Оптимальна ціна страхування

6. Умови прибутковості страхової компанії

7. Параметричний аналіз взаємодії страхової компанії та її клієнта

ВИСНОВОК

ВСТУП

Купівля та продаж ризику. Вступ до теорії страхування та грального бізнесу.

Що стоїть за „одноруким” бандитом ?

Згідно із законами штату Невада, 13 % від прибутків грального бізнесу надходить до бюджету штату. Але щоб сплатити певні відрахування від прибутку, потрібно його мати. Та всі капітани грального бізнесу повинні на щось жити. Словом, бізнес є бізнес, і кожен товар, кожен вид устаткування мусить давати прибуток. Це стосується і гральних автоматів, які за можливість відчути азарт гри стягують данину з гравців. Спробуємо з боку стороннього спостерігача поміркувати, що міститься в середині „однорукого бандита”.

Очевидно, що осердям гральних автоматів є глибоко продумана фахівцями найвищого класу програма тактики гри. Якщо фірма-виробник не дбає про це, то її автомати не знайдуть збуту на ринку. Це - перше.

Друге. Чи можна було б висловити певні міркування щодо принципів побудови програми? Користуючись законами ринкової економіки (а не емоціями гравця та даними промислового шпигунства), на нашу гадку, це можна зробити. Насамперед, дії автомата мають бути рандомізованими, тобто створювати ілюзію випадковості, ілюзію гри та азарту. Без цього автомат буде перетворений на церковну карнавку для пожертвувань (і до нього ніхто не підійде, бо хто хоче пожертвувати, знайде краще місце де це можна зробити) або перетвориться в пункт неконтрольованої допомоги невідомо кому. В другому випадку власник автомата відразу ж законсервує його, чим створить антирекламу фірмі - виробнику автоматів.

Знову ж, користуючись законами ризику, можна деталізувати наші уявлення про „мозок” нашого героя - грального автомата. Очевидно, що закони ринку не дають змоги автоматові вести „чесну гру”, тобто гру, за якою середній виграш та програш гравців збігались би. Коли б автомат був запрограмованим саме на таку гру, то гральний бізнес просто не існував би, тому що потрібно відшкодовувати витрати на сам автомат, сплачувати платню обслуговуючому персоналу, оренду за місце, податки. Що ж, прибуток, так прибуток. Запрограмуємо автомат на максимальну жадібність, тоді виникає інша небезпека - люди не користуватимуться послугами гральних машин, оскільки ці машини вже не будуть такими. Потрібна золота середина.

Один з висновків цієї історії - ризиком потрібно керувати.

Тест журналу FORTUNE

Чому одні люди уникають ризику і ладні сплачувати гроші за зменшення ступеня ризику, а інші, навпаки, прагнуть до ризику і схильні сплачувати гроші вже за ризик? Більш того, одна й та сама людина, маючи в кишені страховий поліс, може з ним прямувати до найближчого казино, щоб відчути азарт гри. Відповідь проста як яблуко: тому, що одним людям за певних обставин подобається ризик, іншим - ні. Більш того, залежно від обставин для однієї і тієї самої особи ризик може бути привабливим, а може бути небажаним.

У роботі В. Крупнова наведений тест із журналу FORTUNE із якого можна визначити ставлення до ризику осіб, які бажають займатися бізнесом. Ось фрагмент цього тесту:

Ви переможець телевізійної гри-шоу. Який приз ви оберете:

1. 2 000 доларів готівкою ( 1 бал )

2. 50-відсотковий шанс виграти 4 000 доларів ( 3 бали )

3. 20-відсотковий шанс виграти 10 000 доларів ( 5балів )

4. 2-відсотковий шанс виграти 100 000 доларів (9балів)?

Згідно з умовами тестування, чим вища сума балів, тим більша схильність особи до ризику.

Неважко помітити, що особливістю отримання виграшу є участь у лотереях, причому кожна з них має однаковий сподіваний виграш - 2 000. Проте у першому випадку ця сума отримується певно, в інших - можна нічого не отримати. Якщо для особи є більш привабливими є лотереї, то очевидно вона схильна до ризику. Якщо ж для неї бажаним є отримання гарантованої суми, яка збігається з середнім виграшем у лотереї, то особа несхильна до ризику. Наведений приклад тесту практично відтворює класичні означення схильності, несхильності до ризику.

Для строгого означення ставлення до ризику потрібно знати, що таке лотерея за Нейманом-Моргенштерном.

Атом ризику, або лотерея за Нейманом-Моргенштерном.

Простою лотереєю називається гра (ситуація), в якій особа може отримати один і лише один з двох виграшів А та В, згідно з імовірностями 1- р та р.

Будемо позначати просту лотерею через L (А, р, В).

Просту лотерею можна розглядати як атом ризику, оскільки вона неподільна з точки зору відображення ризику. Будь-яке подальше спрощення простої лотереї приводить до того, що ризик у цій ситуацій зникає.

Поняття лотереї було запроваджене визначним математиком, фізиком та економістом Джоном фон Нейманом разом з Оскаром Моргенштерном в їх класичній праці. За їх задумом, проста лотерея - первісний атом ризику, з якого складаються більш складні ситуації.

Важливою характеристикою лотереї, за Нейманом-Моргенштерном, є середній (сподіваний) виграш.

Середнім (сподіваним) виграшем лотереї (якщо А та В вимірюються однаковими вимірниками, наприклад, у грошовій формі) називається математичне сподівання виграшу. Згідно позначенням математичного сподівання,

Середній виграш лотереї = (1 - р)А + рВ.

Ставлення до ризику: схильність, несхильність та нейтральність до ризику.

Якщо для особи більш привабливою є альтернатива отримання гарантованого виграшу лотереї, ніж участь у лотереї, то ця особа несхильна до ризику.

Якщо особа бажає взяти участь у лотереї, замість того, щоб отримати її гарантований середній виграш, то вона схильна до ризику.

Якщо особі байдуже чи брати участь у лотереї, чи отримати гарантовано середній виграш, то вона нейтральна до ризику.

Якщо для особи участь є еквівалентною отриманню певної суми гарантовано, то остання називається детермінованим еквівалентом цієї лотереї.

Розглянемо приклад. Для розробки нового товару потрібно 200 000 гривень. У разі успіху товару на ринку прибуток становитиме 1 мільйон, у протилежному випадку - прибутку не буде. Імовірність успіху оцінюється в 0,3.

Маємо лотерею L( - 200 000; 0,3; 1 000 000). Середній виграш лотереї становить величину 0,7(-200 000) + 0,3 1000 000 = 160 000.

Якщо для бізнесмена більш привабливим є отримання напевне суми в 160 000, ніж участь в описаному ризикованому заході, то цей бізнесмен буде несхильним до ризику у протилежному випадку - схильним.

На цьому прикладі можна прослідкувати зв'язок між детермінованим еквівалентом та ставленням до ризику. Припустимо, що детермінований еквівалент для описаної лотереї для бізнесмена становить 200 000. Це означає, що за участь у лотереї він заплатив би суму не більшу ніж 200 000. Отже, й суму 160 000 також. Це означає, в свою чергу, що бізнесмен схильний до ризику. Звідси - висновок: якщо детермінований еквівалент перевищує середній виграш лотереї, то особа - схильна до ризику, у протилежному випадку - несхильна.

Хто не ризикує, той ... ?

Фольклор, художня література, кінематограф у цілому позитивно ставляться до героїв, для яких мандрівка в малярійних джунглях, протиборство з ватажками мафії, здійснення фантастичного наукового проекту привабливіші, ніж навчання в бухгалтерському коледжі або робота в страховій фірмі. Зрештою, герої цього заслуговують. Але економіка базується не на героях, а на простих людях. Тому важливі певні уявлення про те, як вони ставляться до ризику.

Хто з нас не купував лотереї спортлото, не бився об заклад на кухоль пива чи щось подібне. Імовірність отримати виграш у лотереї - мізерна, але процес цікавий: барабан обертається й, може, щастя повернеться до нас обличчям? Та й втрати не такі великі ... Коли ж друзі б'ються об заклад, то теж великі суми не в ходу. Тому досить правдоподібною гіпотезою виглядає припущення про схильність більшості людей до ризику, якщо суми (чи об'єкти), якими ризикують, невеликі порівняно зі статком людини. Важливо підкреслити, що йдеться саме про суми відносно того, що має людина. Для когось 1 000 гривень - це недосяжна мрія, а хтось і втрати 10 000 не помітить. Все відносно ...

Що ж до значних сум, то ситуація кардинально змінюється. Припустимо, що винахідник оцінює успіх принципово нового пилососа своєї конструкції як „п'ятдесят на п'ятдесят”. У разі успіху він отримує 300 000 гривень прибутку, а у випадку невдачі - 100 000 збитку, що приблизно дорівнює його статку. Маємо лотерею з середнім виграшем:

(-100 000) 0,5 + 300 000 0,5 = 100 000.

Але більшість людей не погодилась би брати участь у подібній лотереї. Ступінь привабливості виграшу не перекриває жаху залишитись без нічого. Отже сформулюємо гіпотезу.

Більшість людей несхильна до ризику на значні для свого статку суми. Ризик може бути привабливим, якщо суми, якими ризикують, невеликі порівняно із статком.

Закон спадаючої корисності та ризик

Мікроекономічна теорія дає непогане пояснення гіпотезі, сформульованій на підставі емпіричних досліджень та наочного досвіду.

Для людини, яка має щомісячний доход в 100 гривень, додатковий доход у таку саму суму - істотний додаток. Якщо ж доход перевищує 2 000 гривень, то додатковий доход у 100 гривень може бути й непоміченим. Якщо корисність грошей позначити в умовних одиницях, наприклад, в ютилях, то графік залежності корисності від доходу матиме вигляд, зображений на рис. 1.

Рис. 1. ілюструє , що кожна додаткова одиниця доходу (прибутку майна) додає все менше корисності власнику. Наведена властивість корисності отримала в економічній теорії назву закону спадаючої граничної корисності.

Звідси, на перший погляд, справедлива лотерея з виграшем у 100 000 та програшем в 100 000 та ймовірністю 0,5 вже не буде такою справедливою, оскільки приріст корисності за рахунок збільшення багатства в 100 000 буде меншим, ніж зменшення корисності за рахунок зменшення багатства на ту ж саму суму.

Рис. 1. Корисність особи, несхильної до ризику

Отже, несхильність до ризику випливає із закону спадаючої граничної корисності.

Прибуток страхової компанії

Припустимо, що певна особа мешкає в будинку вартістю 100 000 гривень. Імовірність втратити будинок внаслідок стихійного лиха невелика - 0,001. У термінах „справедливої” лотереї сподіваний збиток становитиме величину - 100 000 х 0,001 = 100. проте власник будинку вважає для себе більш привабливим сплачувати щороку 200 гривень, але мати гарантію на випадок втрати будинку. Що ж, наш власник прямує до солідної страхової компанії, й її службовці оформляють йому страховий поліс, де зазначено, що страхова компанія зобов'язується відшкодувати йому вартість будинку, якщо трапиться страховий випадок. Вартість полісу становить 200 гривень, що для клієнта є прийнятним. Отже наш клієнт бере участь у типовій лотереї: програш у 200 гривень з імовірністю 0,999 та виграш 100 000 з імовірністю 0,001.

А що ж страхова компанія? Чи не збанкрутує вона внаслідок серії нещасних випадків (їх називають страховими випадками). Все може бути, але наша фірма солідна й має 10 000 подібних клієнтів. Щороку вона розраховує в середньому на 10 страхових випадків і планує сплатити власникам полісів 100 000 х 10 = 1000 000. Але ж усі вже сплатили 200 х 10 000 = 2 000 000. Прибуток - очевидний.

Також очевидно, що одним із джерел прибутку страхової компанії є наша несхильність ризикувати.

Описаний спосіб боротьби з ризиком запроваджується страховими компаніями, які прагнуть до прибутку. Близько ѕ власності застраховано в подібних компаніях. Чверть, що залишається, страхується в так званих взаємних страхових компаніях.

10 000 власників будинків вирішили створити взаємний страховий фонд. У середньому щороку трапляється 10 страхових випадків. Для відшкодування збитків гурт власників повинен сплатити 100 000 х 10 = 1 000 000. На кожного в середньому припадає по 100. Ще краще ніж у попередньому випадку. 100 гривень в середньому щороку. Зате є гарантія, що завжди буде дах над головою. Цей спосіб підвищення певності людини й зменшення ризику непоправних втрат дістав назву принципу об'єднання ризику.

Принцип об'єднання ризику та акції

Якщо Ви вкладаєте всі гроші в акції однієї компанії, то її процвітання приведе до значного зростання Вашого добробуту. Проте її занепад - це життєва катастрофа. Згідно із законом спадаючої граничної корисності (див. рис. 1.), спадання корисності у разі зменшення багатства на одиницю більш стрімке, ніж її зростання при збільшенні багатства на ту ж саму одиницю. Давайте складати гроші в акції різних компаній... Отже, якщо у Вас багато грошей, то розпихайте їх по різних кишенях.

Що ж робити, якщо грошей вистачає лише на одну акцію? Невже Ваш добробут тепер вже залежатиме від однієї фірми? Давайте використаємо принцип об'єднання ризику. Об'єднаємося з іншими дрібними власниками (чим нас буде більше, тим краще) і придбаємо акції різних компаній. Дивіденди кожного будуть зростати не так стрімко, проте й катастрофи не відбудеться.

Валюта, валюта ...

Свого часу (в догривневу епоху) Україна світового рекорду з темпів інфляції не подолала, але ми всі відчули, що це явище досить неприємне. Й хоча більшість з нас не вимагала від боса підвищити платню до обіду, бо після обіду ціни підскочать і вже не придбаєш краватку, як це змалював Е.М.Ремарк у „Чорному обеліску”, про те є бажання якимось чином захистити великі чи малі суми в українській валюті шляхом її конвертації в більш стабільну.

Але виявляється, що не такі вони вже й стабільні. Курси валют коливаються, причому досить істотно. Про ступінь їх варіабельності може свідчити коефіцієнт варіації , де - середньорічний курс валюти (відносно деякої іншої), - середньоквадратичне відхилення. Відносно долара США цей показник обчислений для деяких валют за період з 1973 по 1986 рік за даними статистичного щорічника ООН.

Коливання курсу валют означає коливання купівельної спроможності, а отже, коливання нашого багатства. І мало приємного чекати звісток з валютних бірж та дізнаватися про те, що твій гаманець схуд на 1/5. Тому більшість людей була б схильна не чекати покращення показника тієї чи іншої валюти, проте бути певним, що їхні заощадження недоторкані. Виникла ідея використання принципу об'єднання ризику. Об'єднуємося в взаємний фонд, вкладаємо заощадження в різні валюти й маємо майже повну гарантію того, що наші заощадження будуть стабільними. Зменшення курсу однієї валюти буде компенсуватися збільшенням іншої.

Моральний ризик

Якщо дехто застрахував будинок вартістю 100 000 гривень на суму в 200 000, то спокуса підпалити його (або не досить ретельно оберігати) - досить велика. Спокуса для порядного громадянина - не остаточний мотив у його діях, проте не зважати на подібне страховим компаніям - це підвищити ризик банкрутства. Подібний ефект економісти називають моральним ризиком.

Моральний ризик - це поведінка індивіда, який свідомо (або підсвідомо) підвищує ризик втрати, сподіваючись на відшкодування з боку страхової компанії.

Селекція за ступенем імовірності втрат

Транснаціональна страхова компанія страхує автомобілі. Припустимо, що вона застрахувала по 1 000 автомобілів вартістю в 50 000 гривень кожен у двох країнах А і Б. У країні А імовірність крадіжки автомобіля щороку оцінюється в 0,001, у країні Б - в 0,01. Середні втрати на один автомобіль становитимуть - 50 000 х (0,001 + 0,01)/2 = 275. Отже, страховий внесок у 300 гривень забезпечить фірмі сплату страхових премій, відшкодування накладних витрат, а також деякий прибуток. Але жителі країни А швидко зметикують, що страховий внесок в 300 гривень - занадто висока ціна порівняно з середніми втратами в 50 гривень, і не укладатимуть контракти зі стаховою фірмою на подібних умовах. Проте власників автомобілів з країни Б це цілком влаштовує, оскільки середні втрати для них становитимуть величину 500, а страховий поліс коштує 300. Проте фірма буде втрачати в середньому на кожному застрахованому автомобілі 200 гривень і швидко припинить подібний вид страхування.

Мораль цієї історії - ризик потрібно диференціювати. Чим більша ймовірність втрати, тим більшим повинен бути страховий внесок, і навпаки.

Схильність до ризику та гральний бізнес

Для особи, несхильної до ризику, функція корисності має вигляд, зображений на рис. 1. Для більшості людей економісти вважають таку гіпотезу виправданою. Проте не варто нехтувати (й цього не роблять власники казино та „одноруких бандитів”) категорією людей, яких усе ж таки приваблює ризик. Для таких людей функція корисності має вигляд, зображений на рис. 2.

Він свідчить, що кожна додаткова одиниця багатства (в певному інтервалі) все корисніша. Тепер розглянемо лотерею, в якій виграші становитимуть -1 та 1 з рівними імовірностями. Ця лотерея „справедлива”, оскільки середній виграш дорівнює 0. Проте за рис.2 приріст корисності від виграшу більший, ніж зменшення корисності у разі програшу.

Кожна людина - складне поєднання різних якостей та схильностей. Це ж саме стосується й ставлення до ризику. Статистичні дослідження та емпіричний досвід свідчать, що звичайна людина може мати схильність до ризику, коли йдеться про невеликі суми щодо її статку, та надзвичайно обережна - для значних сум. Тобто, функція корисності здебільшого має вигляд, зображений на рис.3.

До точки А спостерігається зростання граничної корисності, особа схильна ризикнути сумами, меншими від А. Після точки А гранична корисність спадає, й людину не приваблює ризик сумами, більшими ніж А.

До речі, здатність ризикувати тими чи іншими сумами здебільшого свідчить не про якісь особливі психологічні якості індивіда, а про його майновий стан. Якщо дехто ставить на гру 1 000 гривень, то це може означати, що для цієї людини зазначена сума - така ж дрібниця, як для більшості - вартість квитка на зразок Спортлото.

Таблична модель поведінки клієнта страхової компанії

Припущення

Клієнт страхової компанії є власником певного активу (майно, внесок у банк, людський капітал), величина якого відображається у грошовій формі. Величину активу будемо позначати через А.

Можливий страховий випадок, коли клієнт втрачає актив або його частку. Це може бути у випадку стихійного лиха, пограбування, банкрутства фінансової установи, якій клієнт довірив свій актив, несприятливої кон'юнктури ринку (чорні вівторки та п'ятниці), втрати працездатності внаслідок виробничої або побутової травми. Будемо розглядати спрощений випадок, коли актив або повністю недоторканий, або повністю вилучений.

Припускаємо, що клієнт може оцінити імовірність страхового випадку. Позначатимемо її через .

Для того, щоб бути більш певним у своєму майбутньому, власник активу може звернутись до страхової компанії і застрахувати актив або його частку.

Компанія пропонує такі умови страхування:

1. клієнт сплачує компанії страховий внесок, пропорційний частці страхового активу. Позначимо через питомий страховий внесок або ціну страхування, тобто страховий внесок, що припадає на одиницю страхового активу;

2. якщо трапляється страховий випадок, компанія сплачує клієнту страхову винагороду, яка теж пропорційна частці застрахованого активу. Через будемо позначати питому страхову винагороду, тобто страхову винагороду, що припадає на одиницю страхованого активу.

Аналіз взаємодії страхової компанії та її клієнтів буде здійснений за таких припущень щодо їх поведінки:

І. Клієнт залежно від питомого страхового внеску та питомої страхової винагороди обирає частку страхового активу;

ІІ. Клієнт є несхильним до ризику, тобто для нього більш привабливим є отримання гарантованого сподіваного виграшу, ніж участь у ризикованій акції, яка має такий самий сподіваний ефект. Припущення можна перефразувати в більш звичайних термінах для страхової справи. Наприклад, власник будинку вартістю 400 000 гривень може його втратити внаслідок стихійного лиха, імовірність якого становить 0,0001 на рік. Сподіваний програш становить у цьому випадку 400 000 х 0,0001 = 40. Проте власник будинку залюбки буде сплачувати 100, а то й 200 гривень щороку страховій компанії, аби вона йому гарантувала відшкодування вартості будинку.

ІІІ. Моделлю системи цінностей людини, яка не байдужа до ризику, є сподівана корисність. Чим більша сподівана корисність для людини, тим більш комфортно вона себе почуває.

ІV. Також будемо припускати, що функція корисності за Нейманом-Моргенштерном клієнта є монотонно зростаючою, тобто чим більший актив має особа, тим краще для неї.

Числовий приклад.

Величина активу становить 20 000 гривень. Власник активу - особа несхильна до ризику. Гранична корисність для власника активу задається формулою:

(1)

де інтервали зміни величини активу вказані в тисячах.

Імовірність страхового випадку =0,0001. Питомий страховий платіж (надалі будемо називати його просто страховим платежем) =0,001, питома страхова винагорода =1. Іншими словами, кожна застрахована 1 000 відшкодовується повністю у разі страхового випадку, але для цього клієнт повинен сплатити компанії 1 гривню.

Чи буде власник активу страхуватись взагалі, але якщо буде то яким обсягом?

Насамперед кілька зауважень щодо системи цінностей потенційного клієнта. Найбільш вагомою для нього буде втрата останніх одиниць його активу (кожна одиниця серед останніх п'яти важить 20 ютилів). Далі вагомість втрат зменшується. В таблиці 1 наведена корисність багатства потенційного клієнта.

Табл.1. Корисність залишку активу після страхового випадку (згідно з граничною корисністю(1))
Табл.2. Обсяг страхування та сподівана корисність (=0,0001, =0,001 )
Величина активу (х) (в тис.)
Гранична корисність (МU)
Корисність (u(x))
Обсяг страхування
Сподівана корисність
0
20
0
0
179,9820
1
20
20
1
179,9830
2
20
40
2
179,9840
3
20
60
3
179,9850
4
20
80
4
179,9860
5
20
100
5
179,9870
6
10
110
6
179,9870
7
10
120
7
179,9870
8
10
130
8
179,9870
9
10
140
9
179,9870
10
10
150
10
179,9870
11
5
155
11
179,9865
12
5
160
12
179,9860
13
5
165
13
179,9855
14
5
170
14
179,9850
15
5
175
15
179,9845
16
1
176
16
179,9836
17
1
177
17
179,9827
18
1
178
18
179,9818
19
1
179
19
179,9809
20
1
180
20
179,9800

Очевидно, що функція корисності клієнта є увігнутою, тобто він не схильний до ризику. Для нього найбільш вагомими є останні одиниці втрати активу після страхового випадку.

Порівняємо добробут клієнта за відсутності страхування та у випадку, коли він страхує перші одиниці активу.

Якщо клієнт не страхується зовсім, то він матиме, як і раніше, актив обсягом 20 000 за відсутності страхового випадку, та нічого, якщо страховий випадок трапиться. З точки зору корисності, він матиме 180 ютилів (див. табл.1) з імовірністю 0,9999 та нічого з імовірністю 0,0001. Сподівана корисність становитиме:

0,9999 х 180 + 0,0001 х 0 = 179,982.

Якщо клієнт страхує 4 000, то у разі відсутності страхового випадку то у нього залишається:

20 000 - 4 000 х 0,001 = 19,996,

а в разі страхового випадку - 4 000 гривень, корисність першої суми згідно з табл.1., становитиме 179,996, другої - 80. Звідси, сподівана корисність дорівнюватиме

179,996 х 0,9999 + 80 х 0,0001 = 179,986.

Таким чином, для особи з функцією корисності, яка відображена в таблиці 1 та на рис.1 страхування обсягом 4 000 є більш привабливим порівняно з випадком коли особа взагалі не страхується.

В табл.2 та на рис.2 відображені результати аналогічних розрахунків для всіх можливих варіантів страхування з дискретністю 1 000. ,

Здійснені розрахунки показують, що діапазон від 5 000 до 10 000 містить найпривабливіший обсяг страхування для клієнта.

Закон спадаючої граничної сподіваної корисності

Рис.5. свідчить про увігнутість функції сподіваної корисності для клієнта незалежно від обсягу страхування. Цей факт можна перефразувати в термінах граничної сподіваної корисності. Дано таке означення:

Граничною сподіваною корисністю називається приріст сподіваної корисності у разі збільшення обсягу страхування на одиницю (малу).

Увігнутість функції сподіваної корисності свідчить про дію в даному випадку закону спадаючої граничної корисності. В табл.3 та на рис.6. відображена дія цього закону.

Табл.3. Гранична сподівана корисність

Обсяг страхування
Гранична сподівана корисність
0
0,0010
1
0,0010
2
0,0010
3
0,0010
4
0,0010
5
0,0010
6
0,0000
7
0,0000
8
0,0000
9
0,0000
10
0,0000
11
-0,0005
12
-0,0005
13
-0,0005
14
-0,0005
15
-0,0005
16
-0,0009
17
-0,0009
18
-0,0009
19
-0,0009
20
-0,0009

Закон спадаючої граничної сподіваної корисності розширює дію закону спадаючої граничної корисності. У випадку розглянутої схеми страхування сформульований закон означає, що кожна додаткова одиниця застрахованого активу приносить його власнику все менший приріст його сподіваної корисності.

Помічена властивість може використовуватись для раціоналізації розрахунків: як тільки гранична сподівана корисність стає від'ємною, розрахунки далі можна не продовжувати.

Реакція клієнта на зміну параметрів страхування

Якщо зафіксувати страхову премію, то страховий платіж можна інтерпретувати як плату за ризик. Оскільки ризик для людини, несхильної до ризику, - антиблаго, то плата за нього здійснюється для того, щоб ризику позбутись. Економісту важливо вміти дослідити ринок товару „ризик”, і зокрема, наскільки жвавіше йде торгівля цим товаром у разі зміни ціни на ризик.

Зробимо ще один розрахунок за іншого страхового платежу r=0,003. Методика розрахунків абсолютно аналогічна до вже наведених. Результати нових розрахунків відображені в табл.4. та на рис. 4.

Табл.4. Обсяг страхування та сподівана корисність за різних рівнів страхових платежів

Обсяг страхування

Сподівана корисність

за r=0.001

Сподівана корисність

за r=0.003
0
179,9820
179,9820
1
179,9830
179,9830
2
179,9840
179,9840
3
179,9850
179,9850
4
179,9860
179,9860
5
179,9870
179,9870
6
179,9870
179,9870
7
179,9870
179,9870
8
179,9870
179,9870
9
179,9870
179,9870
10
179,9870
179,9870
11
179,9865
179,9865
12
179,9860
179,9860
13
179,9855
179,9855
14
179,9850
179,9850
15
179,9845
179,9845
16
179,9836
179,9836
17
179,9827
179,9827
18
179,9818
179,9818
19
179,9809
179,9809
20
179,9800
179,9800

Рис.4. та табл.4. наочно показують, що страховий платіж r=0.003 занадто великий з точки зору клієнта, і він буде ухилятись від страхування. Неважко зміркувати , що занадто великий страховий платіж буде невигідним і для страхової компанії, оскільки у разі небажання клієнтів страхуватися компанія не матиме прибутку. Знову ж потрібна золота середина.

Аналіз рівноваги особи, яка страхується

Математична модель клієнта

Введемо позначення:

А - величина активу клієнта;

- імовірність страхового випадку;

- питомий страховий внесок (плата страховій компанії за кожну одиницю застрахованого майна);

- питома страхова винагорода (відшкодування страховою компанією, яке припадає на кожну одиницю застрахованого активу).

Додатково позначимо через

х - величину страхованого активу (її обирає клієнт страхової компанії):

- функцію за Нейманом-Моргенштерном клієнта, яка визначена на залишку активу після страхового випадку.

Якщо трапиться страховий випадок, то страхова компанія відшкодовує клієнтові величину . Отже, якщо клієнт застрахував х одиниць активу, трапився страховий випадок, то у клієнта залишається . За решту компанія відповідальності не несе.

Якщо ж страхового випадку не буде, то залишок активу становитиме величину А - .

Корисність у разі страхового випадку становить величину , в протилежному випадку - . Сподівана корисність за обсягу страхування х дорівнюватиме величині Поведінка клієнта описуватиметься моделлю:

(4.2)

Гранична сподівана корисність та сподівання граничної корисності

Припустимо, обсяг страхування збільшився на одиницю. Тоді у разі страхового випадку відшкодування зросте на величину q, а корисність - на величину MU(qx) · q, де MU - гранична корисність залишку активу. Якщо страхового випадку не буде, то втрата клієнта збільшиться на величину r, а корисність - на величину MU(А -rх)· r. Останню величи-ну можна інтерпретувати як граничну шкоду (або зі знаком мінус), як граничну ко-рисність страхування за відсутності страхового випадку, а величину MU(qx) · q - як граничну корисність страхування за наявності страхового випадку Сподівана гра-нична корисність дорівнюватиме величині:

Водночас ця величина показує приріст сподіваної корисності внаслідок зміни (збільшення) обсягу страхування, тобто вона є й граничною сподіваною корисністю.

Отже, гранична сподівана корисність страхування збігається Із сподіваною граничною корисністю

Цей факт також негайно підтверджується відомими правилами диференціювання:



Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.