На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Работа № 93655


Наименование:


Курсовик Подстановки эйлера их свойства, связь между ними

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 04.01.2016. Сдан: 2015. Страниц: 43. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Костанайский государственный педагогический институт
Факультет дистанционного обучения
Кафедра высшей математики


ПОДСТАНОВКИ ЭЙЛЕРА


Курсовая работа


Костанай, 2015 г.
СОДЕРЖАНИЕ

Введение
1.Первообразная и неопределнный интеграл……………………………….
1.1 История интегрального исчисления…………………………………
1.2 Определение первообразной……………………………………………
1.3 Определение неопределенного интеграла………………………………
1.4 Таблица интегралов………………………………………………………
1.5 Некоторые свойства неопределенного интеграла……………………
2. Интегрирование рациональных функций...................................................
2.1 Краткие сведения о рациональных функциях………………………….
2.1.1 Многочлен
2.1.2 Дробно-рациональная функция
Интегрирование рациональных дробей……………………
Интегрирование простейших рациональных дробей…………….
Интегрирование рациональных дробей………………………..
Интегрирование иррациональных функций……………………………….
Использование подстановок при интегрировании иррациональных функций
3.1.1.Интегрирование дифференциальных биномов.
3.1.2 Тригонометрические подстановки
3.2 Подстановки Эйлера в интегралах от квадратичной иррациональности

Заключение
Список литературы


ВВЕДЕНИЕ

Математика - одна из самых древних наук. Труды многих ученых вошли в мировой фонд и стали основой современных алгебры и геометрии. В конце XVII в., когда развитие науки шло быстрыми темпами, появились понятия дифференцирование, а вслед за ним и интегрирование.
Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача.
Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений.
Во многих случаях первообразная от заданной элементарной функции не выражается никакими конечными комбинациями основных элементарных функций. О таких функциях говорят, что они не интегрируемы в конечном виде. В ряде случаев, для вычисления используют так называемые Эйлеровы подстановки, являющие собой особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра
Цель данной работы – изучить подстановки Эйлера, их свойства, связь между ними и научиться применять их для вычисления интегралов.


1 Первообразная и неопределенный интеграл

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)
Символ ? введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Я. Б е р н у л л и (1690 г.). Вероятно, оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. (Действительно, операция интегрирования «восстанавливает» функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина интеграл иное: слово integer означает целый.
В ходе переписки И. Бернулли и Г. Лейбниц согласились с предложением Я. Бернулли. Тогда же, в 1696 г., появилось и название новой ветви математики - интегральное исчисление (calculus integralis), которое ввел И. Бернулли.
Другие известные ермины, относящиеся к интегральному исчислению, появились заметно позднее. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Латинское слово primitivus переводится как «начальный»: F(x) = ? f(x)dx - начальная (или первоначальная, или первообразная) для f(x), которая получается из F(x) дифференцированием.
В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что все первообразные функции отличаются на произвольную постоянную.
A ?_a^b-?f (x)dx? - называют определенным интегралом (обозначение ввел К. Фурье (1768—1830), но пределы интегрирования указывал уже Эйлер).
Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 — ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.
Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольников стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.
С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа ? (3.10/71< ? <3.1/7), нашел объемы шара и эллипсоида, площадь сегмента параболы и т. д. Сам Архимед высоко ценил эти результаты: согласно его желанию на могиле Архимеда высечен шар, вписанный в цилиндр (Архимед показал, что объем такого шара равен 2/3 объема цилиндра).
Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления. Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод — метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертикальных отрезков длиной f(х), которым тем не менее приписывали площадь, равную бесконечно малой величине f(х) dx. В соответствии с таким пониманием искомая площадь считалась равной сумме S = ? f(x)dx, aНа такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571—1630) в своих сочинениях “Новая астрономия”.


Рис 1.
(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598—1647) и Э.Торричелли (1608—1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.
Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.
Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b—а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.
S = S1 = c ( b – а ).
Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.
Аналогичный принцип действует в стереометрии и оказывается полезным при нахождении объемов.
В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п — целое (т.е по существу вывел формулу ? хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630—1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.
Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона — Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.
Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801—1862), В.Я.Буняковский (1804—1889), П.Л.Чебышев (1821—1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.
Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826—1866), французского математика Г.Дарбу (1842—1917).
Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838—1922) теории меры.
Различные обобщения понятия интеграла уже в начале нашего столетия были предложены французскими математиками А. Лебегом (1875—1941) и А. Данжуа (1884—1974), советским математиком А. Я. Хинчинчиным (1894—1959).

1.2 Определение первообразной

Рассмотрим задачу: Дана функция f(x);требуется найти такую функцию F(x),производная которой равна f(x),т.е. F? (x)= f(x).
Определение:1.Функция F(x) называется первообразной от функции f(x) на отрезке [a,b], если во всех точках этого отрезка выполняется равенство F? (x)= f(x).
Пример. Найти первообразную от функции f(x)=x2.Из определения первообразной следует, что функция F(x)=х3/3 является первообразной, так как (х3/3)?= x2 .
Легко видеть, что если для данной функции f(x) существует первообразная, то эта первообразная не является единственной. Так, в предыдущем примере можно было взять в качестве первообразных следующие функции: F"(x)" = x^3/3+1,F(x)=x^3/3-7, или вообще F(x)= x^3/3+C (где С - произвольная постоянная), так как (x^3/3+C)^=x^2 . С другой стороны, можно доказать, что функциями вида x^3/3+C исчерпываются все первообразные от функции x2 . Это вытекает из следующей теоремы.
Теорема. Если F1 (x) и F2 (х)- две первообразные от функции f(x) на отрезке [a,b], то разность между ними равна постоянному числу.
Доказательство. В силу определения первообразной имеем
F1 ?(х)= f(x), F2 ?(х)= f(x) (1)
При любом значении х на отрезке [a,b].
Обозначим
F1 (х)- F2 (х) =?(х). (2)
Тогда на основании равенств (1) будет F?1 (х)- F?2 (х)= f(x)- f(x)=0 или ??(х)=[ F?1 (х)- F?2 (х)]??0 при любом значении х на отрезке [a,b]. Но из равенства ??(х)=0 следует, что ?(х) есть постоянная. Действительно, применим теорему Лагранжа к функции ?(х), которая, очевидно, непрерывна и дифференцируема на отрезке [a,b]. Какова бы ни была точка х на отрезке [a,b], мы имеем в силу теоремы Лагранжа ?(х)- ?(а)= (х-а) ??(z), где а < z < x. Так как ??(z)=0, то ?(х)- ?(а)=0, или ?(х)= ?(а). (3)
Таким образом, функция ?(х) в любой точке х отрезка [a,b] сохраняет значение ?(а), а это значит, что функция ?(х) является постоянной на отрезке [a,b]. Обозначая постоянную ?(а) через С, из равенств (2) и (3) получаем F1 (х)- F2 (х) = С.
Из доказанной теоремы следует, что если для данной функции f(x) найдена какая- нибудь одна первообразная F(x), то любая другая первообразная для f(x) имеет вид F(x)+ С, где С = const/

1.3 Определение неопределенного интеграла.

...


ЗАКЛЮЧЕНИЕ
Интеграл используется в таких науках как физика, геометрия, математика и других науках. При помощи интеграла вычисляют работу силы, находят координаты центр масс, путь пройденный материальной точкой. В геометрии используется для вычисления объема тела, нахождение длины дуги кривой и др.
Работая над данной курсовой работой, я изучила большое количество источников, при этом подробно изучив не только подстановки Эйлера, но также узнала историю возникновения интегралов, прочитала автобиографию Леонардо Эйлера (о ней в работе не упоминалось), научилась интегрировать тригонометрические функции.
Считаю, что мне удалось справиться с поставленными задачами.


СПИСОК ЛИТЕРАТУРЫ
1. Высшая математика для экономистов: Учебник для вузов. / Под ред. Н.Ш. Кремера – М.: Банки и биржи, ЮНИТИ, 2006.
2. Высшая математика: Учебник / Ильин В.А. - ПРОСПЕКТ, 2002.
3. Сборник задач по высшей математике для экономистов: Учеб пособ. / Под ред. В.И. Ермакова – М.: ИНФРА-М,2004.
4. Математика для менеджеров и экономистов:Учебник. /Абчук В.А. – СПб.: Изд-во Михайлова В.А., 2002.
5. Основы высшей математики: Учеб. Пос. / В.С. Шипачев -М.: Выс. Шк., 2004,
6. Математика и информатика для гуманитариев: Учебник./Жолков С.Ю. – М: Альфа-М, Инфра-М, 2005.
Дополнительная литература
7. Агафонов С.А. Дифференциальные уравнения.- М.: МГТУ, 2000.
8. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник.- М.: ЮНИТИ, 1998.
9. Афанасьев В.Н. Анализ временных рядов и прогнозирование.- М.: Финансы и статистика, 2000.
10. Башарин Г.П. Начало финансовой математики. М.: ИНФРА-М, 1998.
11. Валенкин И.В., Гробер В.М. Высшая математика: Учеб. пособие.- Ростов Н/Д: Феникс, 2002.
12. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: Учеб. пособие.- М.: Высшая школа, 2002.
13. Выгодский М.Я. Справочник по высшей математике.- М.: Астрель-АСТ, 2002.
14. Гельфанд И.М. Лекции по линейной алгебре.- М.: Добросвет, МЦНМО, 1998.
15. Интернет ресурсы.









Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы

* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.