Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Решение систем линейных уравнений. Прямые методы

Информация:

Тип работы: Курсовик. Предмет: Информатика. Добавлен: 12.09.2016. Сдан: 2015. Уникальность по antiplagiat.ru: < 30%

Описание (план):



Введение 6
Краткое описание видов прямых методов. 6
Описание математических методов и средств решения задач 8
1. Метод Крамера 8
2. Метод обратной матрицы 8
3. Метод Гаусса 9
Прямые методы решения СЛАУ 11
Метод Крамера 11
Метод обратной матрицы 11
Метод Гаусса 11
Тестовые примеры 14
Решение методом Гаусса: 14
Решение методом Крамера: 15
Решение матричным методом: 15
Вывод 17
Список использованной литературы 18


Введение

Как утверждается в книге известного американского математика Валяха, 75% всех расчетных математических задач приходится на решение СЛАУ. Это не удивительно, так как математические модели тех или иных явлений или процессов либо сразу строятся как линейные алгебраические, либо сводятся к таковым посредством дискретизации и/или линеаризации. Поэтому трудно переоценить роль, которую играет выбор эффективного способа решения СЛАУ. Современная вычислительная математика располагает большим арсеналом методов, а математическое обеспечение ЭВМ – многими пакетами прикладных программ, позволяющих решать различные возникающие на практике линейные системы. Чтобы ориентироваться среди методов и программ и в нужный момент сделать оптимальный выбор нужно разбираться в основе построений методов и алгоритмов, учитывающих специфику постановок задач, знать их сильные и слабые стороны и границы применимости.

Методы решения линейных систем. Методы решения систем линейных алгебраических уравнений делятся на две группы – прямые и итерационные. Прямые методы используют определенные соотношения (формулы) для вычисления неизвестных. При этом решение получается после выполнения заранее известного количества арифметических операций. Эти методы сравнительно просты и наиболее универсальны, т.е. пригодны для решения широкого класса систем линейных уравнений.
В тоже время прямые методы имеют и ряд недостатков. Как правило, они требуют хранения в оперативной памяти сразу всей матрицы, и при больших значениях n расходуется много места в памяти компьютера. Кроме этого более существенным недостатком прямых методов является накапливание погрешностей в процессе решения, поскольку вычисления на любом этапе используют результаты предыдущих операций.
Прямые методы решения линейных систем иногда называют точными, поскольку решение выражается в виде точных формул через коэффициенты системы. Однако точное решение может быть получено лишь при точном выполнении вычислений (и, разумеется, при точных коэффициентах системы). На практике же при использовании компьютеров вычисления проводятся с погрешностями. Поэтому неизбежны погрешности и в окончательных результатах, вызванные погрешностями вычислений (например, погрешностью округления).


Краткое описание видов прямых методов.

• Метод Крамера
способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы (причём для таких уравнений решение существует и единственно)

• Метод Гаусса
классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы.
• Метод Жордана-Гаусса
метод, который используется для решения квадратных систем линейных алгебраиче-ских уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе или отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
• Матричный метод
решения (метод решения через обратную матрицу) систем линейных алгебраических уравнений с ненулевым определителем состоит в следующем.
• Метод прогонки
используется для решения систем линейных уравнений вида , где A — трёхдиагональная матрица. Представляет собой вариант метода последовательного исключения неизвестных. Метод прогонки был предложен И. М. Гельфандом и О. В. Локуциевским (в 1952 году; опубликовано в 1960 и 1962 годах), а также независимо другими авторами
• Разложение Холе?цкого
представление симметричной положительно-определённой матрицы в виде , где — нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме: , где — верхняя треугольная матрица. Разложение Холецкого всегда существует и единственно для любой симметричной положительно-определённой матрицы.
• Метод вращения
Как и в методе Гаусса, цель прямого хода преобразований в этом методе – приведение системы к треугольному виду последовательным обнулением поддиагональных элементов сначала первого столбца, затем второго и т.д.
.............



Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.