Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

 

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Работа № 128755


Наименование:


Курсовик Разработка технологического процесса восстановления оси коромысел двигателя Д37

Информация:

Тип работы: Курсовик. Добавлен: 01.02.2022. Год: 2019. Страниц: 35. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Вятская государственная сельскохозяйственная академия
Инженерный факультет
Кафедра ремонта машин


Разработка технологического процесса восстановления оси коромысел двигателя Д37
Курсовая работа
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
ВГСХА 062.00.00.00ПЗ

Выполнил
Группа ИАу - 521


Киров 2006

Содержание

Введение
1. Служебное назначение, техническая характеристика детали
2. Выбор способов устранения дефектов детали
3. Программа выпуска ремонтируемых изделий
4. Маршрутный технологический процесс ремонта детали
5. Технологические операции ремонта детали
6. Выбор технологических баз
7. Расчет режимов обработки
7.1 Расчёт величины припуска покрытий под механическую обработку
7.2 Предварительное шлифование "на верность"
7.3 Нанесение гальванопокрытия
7.4 Шлифование поверхности (окончательная обработка)
8. Технологическая документация
Заключение
Список литературы
Приложение


Введение

В процессе эксплуатации автомобиля его надежность и другие свойства постепенно снижаются вследствие изнашивания деталей, а также коррозии и усталости материала, из которого они изготовлены. В автомобиле появляются различные неисправности, которые устраняют при ТО и ремонте.
В какой бы совершенной конструкции машина не выступала в процессе производства, при её употреблении на практике обнаруживаются недостатки, которые приходится исправлять дополнительным трудом. С другой стороны, чем больше она вышла за предел своего возраста, чем больше сказывается действие нормального изнашивания, чем больше изношен и старчески ослаб материал, из которого она сделана, тем многочисленнее и значительнее становятся ремонтные работы, необходимые для того, чтобы поддержать существование машины до конца периода средней продолжительности ее жизни и в высшей степени важно немедленно исправлять всякое повреждение машин. В виду этого значит, что с технической точки зрения ремонт машин- это объективная необходимость. Только благодаря ремонту возможно поддерживать существование машины до истечения средней продолжительности её жизни.
Такое положение в полной мере относится и к современным автомобилям. Необходимость и целесообразность ремонта автомобилей обусловлены прежде всего неравномерностью их деталей и агрегатов. Известно, что создать равнопрочную машину, все детали которой изнашивались бы равномерно и имели бы одинаковый срок службы невозможно. Следовательно, ремонт автомобиля даже только путем замены некоторых его деталей и агрегатов, имеющих небольшой ресурс, всегда целесообразен и с экономической точки зрения оправдан. Поэтому в процессе эксплуатации автомобили проходят на автотранспортных предприятиях (АТП) периодическое ТО и при необходимости текущий ремонт (ТР), который осуществляется путем замены отдельных деталей и агрегатов, отказавших в работе. Это позволяет поддерживать автомобиль в технически исправном состоянии.
При длительной эксплуатации автомобили достигают такого состояния, когда затраты средств и труда, связанные с поддержанием их в работоспособном состоянии в условиях АТП, становятся больше прибыли, которую они приносят в эксплуатации. Такое техническое состояние автомобилей считается предельным, и они направляются в капитальный ремонт (КР). Задача КР состоит в том, чтобы с оптимальными затратами восстановить утраченные автомобилем работоспособность и ресурс до уровня, нового или близкого к нему.
Ремонт автомобилей имеет большое экономическое значение. Основными источниками экономической эффективности ремонта автомобилей является использование остаточного ресурса их деталей. Около 70…75% деталей автомобилей, прошедших срок службы до первого КР, имеют остаточный ресурс и могут быть использованы повторно либо без ремонта, либо после небольшого ремонтного воздействия.


1. Служебное назначение, техническая характеристика детали

Ось коромысел входит в состав деталей газораспределительно о механизма, определяющая вместе с другими составляющими ресурс данного механизма. Эту же деталь в отдельных источниках называют валиком коромысел. Масса детали 0,124 кг, материал Ст. 40Х, твёрдость HRC 53…61. В процессе работы двигателя на неё действуют нагрузки со стороны коромысел клапанов.
Самые типичные, как правило, виды дефектов это: износ поверхности под втулки и стойки коромысел, а также ослабление посадки заглушек масляных каналов. Предельная степень износа сопряжений в газораспределительно механизме характеризуется экономическими критериями: допустимым падением мощности двигателя, ухудшение топливной экономичности и повышенным расходом масла на угар. Кроме того, износы приводят к уменьшению степени сжатия и коэффициента наполнения двигателя, что ухудшает пусковые качества дизеля и приводит к неполному сгоранию топлива (за счёт чего и падает мощность).
Данная ось коромысел имеет следующие дефекты:

Таблица 1.1 – Дефекты оси коромысел
Контролируемый
дефект Способы и средства контроля Размеры,мм
По чертежу Допустимый в сопряжении с деталями:
бывшими в
эксплуатации новыми
Износ поверхности под втулки коромысел Скобы или микрометр 16-0,012 1 ,97 15,94
Износ поверхности под стойки Скобы или микрометр 16-0,012 1 ,98 -
Ослабление посадки или выпадение заглушек Молоток - Н допускается


Таблица 1.2 – Химический состав стали 40Х, % (ГОСТ 1050-88)
C Si Mn Cr Ni Cu S и P
Не более
0,36…0,44 0,17…0,37 0 50…0,80 0,80…1,10 0, 0 0,30 0,035

Таблица 1.3 – Механические свойства стали 40Х
?т, МПа ?в, МПа ?5,% ?,% KCU, дж/см2 HB (не более)
не более горячекатаной о ожжёной
780 980 10 45 59 - -


2. Выбор способов устранения дефектов детали

При выборе рациональных способов устранения дефектов детали используем приложения к методическим указаниям для выполнения курсовой работы. Целесообразные способы восстановления устанавливают на основе конструктивно-технол гических характеристик детали.
К ним относят вид основного материала детали, вид восстанавливаемой поверхности, материал покрытия, предельно (минимально) допустимый диаметр восстанавливаемой поверхности (наружный), минимально допустимый диаметр восстанавливаемой поверхности (внутренний), минимальная толщина (глубина) наращивания (упрочнения), максимальная толщина (глубина) наращивания (упрочнения), сопряжения или посадки восстанавливаемой поверхности, вид нагрузки на восстанавливаемую поверхность. С учетом номенклатуры деталей-представител й, рекомендуемых для восстановления тем или иным способом выбираем ряд альтернативных способов восстановления ремонтируемой детали...


Заключение

В настоящее время в условиях авторемонтного производства все большее количество изношенных деталей восстанавливается осталиванием.
Видимые простота и доступность технологического процесса осталивания для рабочего персонала невысокой квалификации способствуют появлению большого количества различных рекомендаций, порой противоречивых, а часто необоснованных.
Прежде всего, следует помнить, что электролитическое железо не является по своим физико-механическим свойствам аналогом среднеуглеродистой закаленной стали, а представляет собой специфичный материал с характерными и присущими только ему свойствами.
При восстановлении изношенных поверхностей деталей не следует стремиться к получению высокой твердости покрытий электролитического железа, т. к. величина твердости покрытий электролитического железа не находится в прямой зависимости с их долговечностью. Повышению долговечности покрытий электролитического железа способствует только оптимальная величина их твердости, которая зависит от марки сопряженного материала и параметров электролиза.
В силу особенностей физико-механических свойств, присущих электролитическому железу, оптимальная чистота восстановленных поверхностей не совпадает с чистотой, заданной рабочими чертежами на изготовление этих деталей.
Температура простых хлористых электролитов осталивания не должна быть при восстановлении деталей ниже 70° С. В случае снижения температуры электролита за указанные пределы покрытия электролитического железа получаются не ровными, не плотными, с пропусками и раковинами.


Список литературы

1. Шишканов Е. А., Баранов Н. Ф. Разработка технологического процесса восстановления деталей машин: Методические указания для студентов инженерного факультета. – Киров: Вятская ГСХА, 2005 – 67с.
2. А. Н. Швецов Основы восстановления деталей осталиванием. – Омск.: Западно-Сибирское книжное издательство, 1973. – 144с.
3. Воловик Е. Л. Справочник по восстановлению деталей / Е. Л. Воловик. – М.: Колос, 1981. – 381с.
4. Капитальный ремонт автомобилей: Справочник / Л. В. Дехтеринский, Р. Е. Есенберлин, В. П. Апсин и др. / Под ред. Р. Е. Есенберлина. – М.: Транспорт, 1989. – 335с.
5. Надежность и ремонт машин / В. В. Курчаткин, Н. Ф. Тельнов, К. А. Ачкасов и др.; Под ред. В. В. Курчаткина. – М.: Колос, 2000. – 776с.


Приложение А

Техническая характеристика бесцентрово-шлифовал ного станка 3180

1. Наименьший и наибольший диаметр шлифования, мм - 5-75.
2. Диаметр шлифовального круга, мм:
3. Наибольшая ширина круга, мм – 150.
4. Число оборотов шлифовального круга, об/мин – 1200.
5. Наибольшее перемещение бабки ведущего круга, мм: а) без салазок – 80; б) с салазками – 100.
6. Наибольший угол поворота головки шпинделя ведущего круга, град. – 6.
7. Диаметр ведущего круга, мм: а) наименьший – 260; б) наибольший – 300.
8. Наибольшая ширина ведущего круга, мм – 150.
9. Число оборотов шпинделя ведущего круга, об/мин: а) при механическом приводе – 13; 16; 22; 29; 39; 52; 70; 94; 126; 166; 212; 294; б) при гидравлическом приводе (бесступенчатое регулирование) – 25-225.
10. Мощность электродвигателя, кВт – 12.
11. Габаритные размеры, мм – 2265*1650*1620.
12. Масса станка, кг – 3250.


Смотреть работу подробнее




Скачать работу


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.