Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.
Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.
Результат поиска
Наименование:
Контрольная Предмет: Методы оптимальных решений (ш. 32).Сделана в январе 2019 года для Алтайского Государственного Аграрного Университета. Расчеты сделаны в файле excela (т.е. два файла).
Информация:
Тип работы: Контрольная.
Предмет: Мат. методы в экономике.
Добавлен: 19.10.2023.
Год: 2019.
Страниц: 28.
Уникальность по antiplagiat.ru: 31. *
Описание (план):
Задание 1 3. Развитие экономико-математиче ких методов и моделирования производственных систем в нашей стране и за рубежом. 11. Общая задача линейного программирования, её математическая формулировка. 26. Экономико-математиче кая модель оптимизации структуры посевных площадей. Задание 2 Решить графическим методом задачу линейного программирования. Найти максимальное и минимальное значение целевой функции при заданных ограничениях. 3. 6Х1 - 4Х2 ? -12 -4Х1 +Х2 ? 3 2Х1 - 3Х2 ? -6 Х1 ? 0, Х2 ?0 Z (х) = 3Х1 + 5Х2 Задание 3 Решить задачу линейного программирования симплексным методом. 1. Решить задачу в симплексных таблицах (условие задачи переписывается) 2. Из последней симплексной таблицы записать полученное оптимальное решение, если решения нет, то обосновать причину. 3. Провести проверку полученного решения путем подстановки результата в исходную задачу. 3. Z max = 10X1 - 3X2 - 2X3 X1 + X2 + X3 Задание 1
3. Развитие экономико-математиче ких методов и моделирования производственных систем в нашей стране и за рубежом.
Как в теоретическом, так и в прикладном отношении представляют интерес работы по построению и использованию производственных функций для анализа сельскохозяйственного производства в США. В 1909 году Митчерлих предложил нелинейную производственную функцию: удобрения – урожайность. Независимо от него Спиллман предложил показательное уравнение урожайности. На их основе был построен ряд других агротехнических производственных функций. В 1928 г. Ч. Кобб и П. Дуглас на основе данных по обрабатывающей промышленности США за период 1899 – 1922 гг. представили функцию P = bLa K 1- a . Это была первая эмпирическая производственная функция, построенная по данным временных рядов. В настоящее время формула Кобба – Дугласа широко используется в учебной и научной литературе. В 1928 г. В. Рамсей предложил упрощенную модель, в которой дается не только описание долгосрочного роста, но и ставится проблема определения его оптимального варианта. Модель интересна тем, что по существу она явилась предвестницей современного подхода к проблемам оптимального роста. В 1932 г. Джон фон Нейман изложил основы многосекторной модели расширяющейся экономики, в которой ввел понятие динамического равновесия. С моделью Неймана связаны знаменитые теоремы о магистрали. Модель построена в предположении совершенной конкуренции, в рамках основных положений неоклассического направления. В 30-х же годах значительное внимание экономистами – математиками было уделено проблеме существования решения системы уравнений общего равновесия. Для доказательства существования экономически содержательного решения использовался упрощенный вариант модели Вальраса. Исходными предпосылками такой модели были следующие: ресурсы заданы и используются при постоянных технологических коэффициентах, но когда ресурсы заданы в фиксированных количествах, естественно, что они, как правило, не будут соответствовать структуре производства необходимой продукции, и, следовательно, не будут использоваться полностью. Венгерский математик А. Вальд в 1935 - 1937 гг. выяснил ограничивающие условия, при которых модель дает экономически содержательное решение без отрицательных значений искомых переменных (выпуск продукции, цены, в том числе заработная плата), и показал, какие блага являются «редкими», какие «избыточными», «общедоступными». Такими условиями являются преобразования некоторых уравнений в неравенстве и предположение, что некоторые (избыточные) факторы производства будут недоиспользованы и должны получить нулевую оценку, некоторые способы производства не используются, так как издержки производства превышают цену производимого продукта. Нетрудно видеть, что уже здесь присутствуют предпосылки линейного программирования. В 1931 г. было создано международное эконометрическое общество, видным представителем и активным деятелем которого был норвежский ученый Р. Фриш (1895 – 1973). Термин «эконометрика» Фриш ввел для обозначения направления, которое должно было представлять синтез экономической теории, математики и статистики. В дальнейшем круг проблем, разрабатываемых в рамках данного направления, сузился, и сегодня в понятие «эконометрика» включается главным образом построение математико-статистич ских моделей экономических процессов (так называемых эконометрических моделей), использование методов математической статистики для определения параметров этих моделей. ... Задание 1 3. Развитие экономико-математиче ких методов и моделирования производственных систем в нашей стране и за рубежом. 11. Общая задача линейного программирования, её математическая формулировка. 26. Экономико-математиче кая модель оптимизации структуры посевных площадей. Задание 2 Решить графическим методом задачу линейного программирования. Найти максимальное и минимальное значение целевой функции при заданных ограничениях. 3. 6Х1 - 4Х2 ? -12 -4Х1 +Х2 ? 3 2Х1 - 3Х2 ? -6 Х1 ? 0, Х2 ?0 Z (х) = 3Х1 + 5Х2 Задание 3 Решить задачу линейного программирования симплексным методом. 1. Решить задачу в симплексных таблицах (условие задачи переписывается) 2. Из последней симплексной таблицы записать полученное оптимальное решение, если решения нет, то обосновать причину. 3. Провести проверку полученного решения путем подстановки результата в исходную задачу. 3. Z max = 10X1 - 3X2 - 2X3 X1 + X2 + X3